Saturday, March 11, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 50

Express the vlaue of π/40tan8xsecxdx in terms of I. Suppose that I=π/40tan6xsecxdx.
By using integration by parts,
If we let u=tan7x and dv=tanxsecxdx, then
du=7tan6xsec2xdx and v=tanxsecxdx=secx

So,

π/40tan8xsecxdx=π/40tan7tanxsecxdx=uvvdu=tan7xsecxsec(7tan6xsec2xdx)=tan7xsecx7tan6xsec2xsecxdx


Recall that sec2x=1+tan2x

π/40tan8xsecxdx=tan6xsecx7tan6x(1+tan2x)secxdx=tan6secx7tan6xsecxdx7tan8xsecxdx


By combining like terms

tan8xsecxdx+7tan8xsecxdx=tan7xsecx7tan6xsecxdx8tan8xsecxdx=tan7xsecx7tan6xsecxdxtan8xsecxdx=tan7xsecx7tan6xsecxdx8


Evaluating from 0 to π4,
=[tan7xsecx8]π/4078π/40tan6xsecxdx

but, I=π/40tan6xsecxdx, so

π/40tan8xsecxdx=[tan7(π4)sec(π4)8][tan7(0)sec(0)8]78Iπ/40tan8xsecxdx=2878I=18(27I)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...