Saturday, March 11, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 50

Express the vlaue of $\displaystyle \int^{\pi/4}_0 \tan^8 x \sec x dx$ in terms of $I$. Suppose that $\displaystyle I = \int^{\pi/4}_0 \tan^6 x \sec x dx$.
By using integration by parts,
If we let $u = \tan^7 x$ and $dv = \tan x \sec x dx$, then
$du = 7 \tan^6 x \sec^2 x dx$ and $\displaystyle v = \int \tan x \sec x dx = \sec x$

So,

$
\begin{equation}
\begin{aligned}
\int^{\pi/4}_0 \tan^8 x \sec x dx &= \int^{\pi/4}_0 \tan^7 \cdot \tan x \cdot \sec x dx = uv - \int vdu\\
\\
&= \tan^7 x \sec x - \int \sec \left( 7 \tan ^6 x \sec^2 x dx \right)\\
\\
&= \tan^7 x \sec x - \int 7 \tan^6 x \sec^2 x \sec x dx
\end{aligned}
\end{equation}
$


Recall that $\sec^2 x = 1 + \tan^2 x$

$
\begin{equation}
\begin{aligned}
\phantom{\int^{\pi/4}_0 \tan^8 x \sec x dx}&= \tan^6 x \sec x - \int 7 \tan^6 x \left( 1 + \tan^2 x \right) \sec x dx\\
\\
&= \tan^6 \sec x - 7 \int \tan^6 x \sec x dx - 7 \int \tan^8 x \sec x dx
\end{aligned}
\end{equation}
$


By combining like terms

$
\begin{equation}
\begin{aligned}
\int \tan^8 x \sec x dx + 7 \int \tan^8 x \sec x dx &= \tan^7 x \sec x - 7 \int \tan^6 x \sec x dx\\
\\
8 \int \tan^8 x \sec x dx &= \tan^7 x \sec x -7 \int \tan^6 x \sec x dx\\
\\
\int \tan^8 x \sec x dx &= \frac{\tan^7 x \sec x -7 \int \tan^6 x \sec x dx }{8}
\end{aligned}
\end{equation}
$


Evaluating from 0 to $\displaystyle \frac{\pi}{4}$,
$\displaystyle = \left[ \frac{\tan^7 x \sec x}{8} \right]^{\pi/4}_0 - \frac{7}{8} \int^{\pi/4}_0 \tan^6 x \sec x dx$

but, $\displaystyle I = \int^{\pi/4}_0 \tan^6 x \sec x dx$, so

$
\begin{equation}
\begin{aligned}
\int^{\pi/4}_0 \tan^8 x \sec x dx &= \left[ \frac{\tan^7 \left( \frac{\pi}{4} \right) \sec \left( \frac{\pi}{4} \right) }{8} \right] - \left[ \frac{\tan^7(0) \sec(0)}{8} \right] - \frac{7}{8} I\\
\\
\int^{\pi/4}_0 \tan^8 x \sec x dx &= \frac{\sqrt{2}}{8} - \frac{7}{8} I = \frac{1}{8} (\sqrt{2} - 7 I)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...