Friday, March 10, 2017

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 7

Determine the equation of the tangent line to the curve y=x at the point (1,1)

Using the definition (Slope of the tangent line)

m=limxaf(x)f(a)xa

We have a=1 and f(x)=x, so the slope is


m=limx1f(x)f(1)x1m=limx1x1x1 Substitute value of a and xm=limx1x1x1x+1x+1 Multiply both numerator and denominator by (x+1)m=limx1\cancelx1\cancel(x1)(x+1) Cancel out like terms m=limx11x+1=11+1 Evaluate the limitm=12 Slope of the tangent line


Using point slope form


yy1=m(xx1)y1=12(x1) Substitute value of x,y and my=x12+1 Get the LCDy=x1+22 Combine like termsy=x+12


Therefore,
The equation of the tangent line at (1,1) is y=x+12

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...