Friday, March 10, 2017

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 7

Determine the equation of the tangent line to the curve $y = \sqrt{x}$ at the point $( 1, 1)$

$\text{Using the definition (Slope of the tangent line)}$

$\displaystyle m = \lim \limits_{x \to a} \frac{f(x) - f(a)}{x -a}$

We have $a = 1$ and $f(x) = \sqrt{x}$, so the slope is


$
\begin{equation}
\begin{aligned}

\displaystyle m =& \lim \limits_{x \to 1} \frac{f(x) - f(1)}{x - 1} && \\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{\sqrt{x} - \sqrt{1}}{x - 1}
&& \text{ Substitute value of $a$ and $x$}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} \cdot \frac{\sqrt{x} + 1}{\sqrt{x} + 1}
&& \text{ Multiply both numerator and denominator by $(\sqrt{x} + 1)$}\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{\cancel{ x - 1}}{\cancel{(x - 1)} (\sqrt{x} + 1)}
&& \text{ Cancel out like terms }\\
\\
\displaystyle m =& \lim \limits_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{\sqrt{1} + 1}
&& \text{ Evaluate the limit}\\
\\
m =& \frac{1}{2}
&& \text{ Slope of the tangent line}


\end{aligned}
\end{equation}
$


Using point slope form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1) && \\
\\
\displaystyle y - 1 =& \frac{1}{2} ( x - 1 )
&& \text{ Substitute value of $x, y$ and $m$}\\
\\
\displaystyle y =& \frac{x- 1}{2} + 1
&& \text{ Get the LCD}\\
\\
\displaystyle y =& \frac{x - 1 + 2}{2}
&& \text{ Combine like terms}\\
\\
y =& \frac{x+1}{2}
\end{aligned}
\end{equation}
$


Therefore,
The equation of the tangent line at (1,1) is $\displaystyle y = \frac{x + 1}{2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...