Friday, March 10, 2017

Intermediate Algebra, Chapter 3, 3.1, Section 3.1, Problem 42

Determine the $x$- and $y$-intercepts. Then graph the equation $\displaystyle \frac{5}{7}x + \frac{6}{7}y = -2$.

To find $x$-intercept, we set $y = 0$


$
\begin{equation}
\begin{aligned}

\frac{5}{7}x + \frac{6}{7}(0) =& -2
\\
\\
\frac{5}{7}x =& -2
\\
\\
x =& -2 \left( \frac{7}{5} \right)
\\
\\
x =& - \frac{14}{5}

\end{aligned}
\end{equation}
$


To find $y$-intercept, we set $x = 0$


$
\begin{equation}
\begin{aligned}

\frac{5}{7}(0) + \frac{6}{7} y
\\
\\
\frac{6}{7}y =& -2
\\
\\
y =& -2 \left( \frac{7}{6} \right)
\\
\\
y =& - \frac{7}{3}

\end{aligned}
\end{equation}
$


The line $\displaystyle \frac{5}{7}x + \frac{6}{7}y = -2$ passes through the points $\displaystyle \left( - \frac{14}{5}, 0 \right)$ and $\displaystyle \left( 0, - \frac{7}{3} \right)$. So the graph is

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...