Friday, March 31, 2017

College Algebra, Chapter 2, Review Exercises, Section Review Exercises, Problem 60

According to physics, the maximum range $R$ of a projectile is directly proportional to the square of its velocity $\nu$. A baseball pitcher throws a ball at $60 \frac{\text{mi}}{\text{h}}$, with a maximum range of $242 \text{ft}$. What is his maximum range if he throws the ball at $70 \frac{\text{mi}}{\text{h}}$

$
\begin{equation}
\begin{aligned}
R_1 &= k (\nu_1)^2\\
\\
k &= \frac{R_1}{(\nu_1)^2} && \Longleftarrow\text{Equation 1}
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
R_2 &= k (\nu_2)^2\\
\\
k &= \frac{R_2}{(\nu_2)^2} && \Longleftarrow\text{Equation 2}
\end{aligned}
\end{equation}
$


Using Equations 1 and 2

$
\begin{equation}
\begin{aligned}
\frac{R_1}{(\nu_1)^2} & = \frac{R_2}{(\nu_2)^2} && \text{Apply cross multiplication}\\
\\
R_2 (\nu_1)^2 &= R_1 (\nu_2)^2 && \text{Solve for } R_2\\
\\
R_2 &= \left( \frac{\nu_2}{\nu_1} \right)^2 R_1 && \text{Substitute the given}\\
\\
R_2 &= \left( \frac{70}{60} \right)^2 (242 \text{ ft})\\
\\
R_2 &= 329.38 \text{ or } 329 \text{ ft}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...