Friday, March 31, 2017

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 26

Find the derivative of $\displaystyle g(t) = \frac{1}{\sqrt{t}}$ using the definition and the domain of its derivative.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad g'(t) &= \lim_{h \to 0} \frac{g(t + h) - g(t)}{h}
&&
\\
\\
\qquad g'(t) &= \lim_{h \to 0} \frac{\displaystyle \frac{1}{\sqrt{t + h}}- \frac{1}{\sqrt{t}}}{h}
&& \text{Substitute $g(t + h)$ and $g(t)$}
\\
\\
\qquad g'(t) &= \lim_{h \to 0} \frac{\sqrt{t} - \sqrt{t + h}}{(h)(\sqrt{t}) (\sqrt{t + h})}
&& \text{Get the LCD of the numerator and simplify}
\\
\\
\qquad g'(t) &= \lim_{h \to 0} \frac{\sqrt{t} - \sqrt{t + h}}{(h)(\sqrt{t})(\sqrt{t + h}) } \cdot \frac{\sqrt{t} + \sqrt{t + h}}{\sqrt{t} + \sqrt{t + h}}
&& \text{Multiply both numerator and denominator by $(\sqrt{t} + \sqrt{t + h})$}
\\
\\
\qquad g'(t) &= \lim_{h \to 0} \frac{t - (t + h)}{(h)(\sqrt{t})(\sqrt{t + h})(\sqrt{t} + \sqrt{t + h})}
&& \text{Combine like terms}
\\
\\
\qquad g'(t) &= \lim_{h \to 0} \frac{-\cancel{h}}{\cancel{(h)}(\sqrt{t})(\sqrt{t + h})(\sqrt{t} + \sqrt{t + h}) }
&& \text{Cancel out like terms}
\\
\\
\qquad g'(t) &= \lim_{h \to 0} \frac{-1}{(\sqrt{t})(\sqrt{t + h})(\sqrt{t} + \sqrt{t + h})} = \frac{-1}{(\sqrt{t})(\sqrt{t + 0})(\sqrt{t} + \sqrt{t + 0})}
&& \text{Evaluate the limit}
\\
\\
\qquad g'(t) &= \frac{-1}{(\sqrt{t})(\sqrt{t})(\sqrt{t} + \sqrt{t})}
&& \text{Simplify the equation}
\\
\\
\qquad g'(t) &= \frac{-1}{2t \sqrt{t}}

\end{aligned}
\end{equation}
$



Both functions involve square root that is continuous on $x \geq 0$. However, $\sqrt{x}$ is placed in the denominator that's why is not included. Therefore, the domain of $g(t)$ and $g'(t)$ is $(0, \infty)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...