Thursday, March 16, 2017

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 32

Differentiate $\displaystyle f(x) = \frac{1}{1 + \ln x}$ and find the domain of $f$
The denominator of the given function should be greater than zero. So,

$
\begin{equation}
\begin{aligned}
1 + \ln x & > 0 \\
\\
\ln x & > - 1\\
\\
e^{\ln x} & > e^{-1}\\
\\
x &> e^{-1}\\
\\
x &> \frac{1}{e}
\end{aligned}
\end{equation}
$

Therefore, the domain is $\displaystyle \left[ 0, \frac{1}{e} \right)\bigcup \left( \frac{1}{e}, \infty \right)$
Solving for $f'$

$
\begin{equation}
\begin{aligned}
f'(x) &= \frac{d}{dx} \left( \frac{1}{1 + \ln x} \right)\\
\\
f'(x) &= \frac{(1+ \ln x) \frac{d}{dx} (1) - (1) \frac{d}{dx}(1 + \ln x)}{(1+ \ln x)^2}\\
\\
f'(x) &= \frac{-\frac{1}{x}}{(1+\ln x)^2}\\
\\
f'(x) &= \frac{-1}{x(1 + \ln x)^2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...