Saturday, March 4, 2017

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 21

Indefinite integrals are written in the form of int f(x) dx = F(x) +C
where: f(x) as the integrand
F(x) as the anti-derivative function
C as the arbitrary constant known as constant of integration
For the given integral problem int sec^3(pix) dx , we may evaluate this using u-substitution.
Let: u = pix then du = pi dx or (du)/pi =dx .
The integral becomes:
int sec^3(pix) dx =int sec^3(u) * (du)/pi
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int sec^3(u) * (du)/pi =1/piint sec^3(u) du
Apply integration formula for secant function:
int sec^n(x) dx = (sec^(n-1)(x)sin(x))/(n-1) + (n-2)/(n-1) int sec^(n-2)(x) dx
We get:
1/piint sec^3(u) du =1/pi [(sec^(3-1)(u)sin(u))/(3-1) + (3-2)/(3-1) int sec^(3-2)(u) du]
=1/pi [(sec^2(u)sin(u))/(2) + (1)/(2) int sec^(1)(u) du]
For the integral of int sec^(1)(u) du or int sec^(u) du , we may apply int sec(theta) d theta = ln(sec(theta)+tan(theta))+C .
Then,int sec^(u) du =ln(sec(u)+tan(u))+C
The complete indefinite integral will be:
1/piint sec^3(u) du =1/pi [(sec^2(u)sin(u))/(3-1) + (1)/(2) int sec^(1)(u) du]
=1/pi [(sec^2(u)sin(u))/(2) + (1)/(2)[ln(sec(u)+tan(u))]]+C
=1/pi [(sec^2(u)sin(u))/2+ln(sec(u)+tan(u))/2]+C
=(sec^2(u)sin(u))/(2pi)+ln(sec(u)+tan(u))/(2pi)+C
or tan(u)/(2picos(u)) + 1/(2pi)ln((1+sin(u))/cos(u))+C
Plug-in u = pix , we get the final indefinite integral as:
int sec^3(pix) dx=(sec^2(pix)sin(pix))/(2pi)+ln(sec(pix)+tan(pix))/(2pi)+C
or tan(pix)/(2picos(pix)) + 1/(2pi)ln((1+sin(pix))/cos(pix))+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...