Monday, June 6, 2016

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 34

Suppose that a piece of wire 10m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. How should the wire be cut so that the total area enclosed is (a) a maximum? (b) a minimum?




Let $x$ be the perimeter of the square. Then $10 - x$ will be the circumference of the circle.
So, the perimeter of the square is equal to...

$
\begin{equation}
\begin{aligned}
x &= 4s ; \text{ where } s \text{ is the length of the side of the square...}\\
\\
s &= \frac{x}{4}
\end{aligned}
\end{equation}
$


Then, the circumference is...


$
\begin{equation}
\begin{aligned}
10 - x &= 2 \pi r\\
\\
r &= \frac{10-x}{2\pi}
\end{aligned}
\end{equation}
$


Then, the total area is

$
\begin{equation}
\begin{aligned}
A(x) &= (s)^2 + \pi r^2\\
\\
A(x) &= \left( \frac{x}{4} \right)^2 + \pi \left( \frac{10-x}{2\pi} \right)^2
\end{aligned}
\end{equation}
$


Taking the derivative with respect to $x$, we obtain...


$
\begin{equation}
\begin{aligned}
A'(x) &= 2 \left( \frac{x}{4} \right) \left( \frac{1}{4} \right) + 2\pi \left( \frac{10-x}{2 \pi} \right) \left( \frac{-1}{2\pi} \right)\\
\\
A'(x) &= \frac{x}{8} - \frac{5}{\pi} + \frac{x}{2 \pi }\\
\\
A'(x) &= \left( \frac{1}{2\pi} + \frac{1}{8} \right) x - \frac{5}{\pi}
\end{aligned}
\end{equation}
$


when $A'(x) =0$,

$
\begin{equation}
\begin{aligned}
0 &= \left( \frac{1}{2 \pi} + \frac{1}{8} \right) x - \frac{5}{\pi}\\
\\
x &= \frac{\frac{5}{\pi}}{\left(\frac{1}{2\pi} + \frac{1}{8}\right)} = \frac{40}{4 + \pi}
\end{aligned}
\end{equation}
$


If we evaluate the total area with $x=0$, $x= 10$ and $\displaystyle x = \frac{40}{4+\pi}$, then...

$
\begin{equation}
\begin{aligned}
A(0) &= \left( \frac{0}{4} \right)^2 + \pi \left( \frac{10-0}{2\pi} \right)^2 = \frac{25}{\pi} = 7.96\\
\\
A(10) &= \left( \frac{10}{4} \right)^2 + \pi \left( \frac{10-10}{2\pi} \right)^2 = 6.25\\
\\
A\left( \frac{40}{4+\pi} \right) &= \left( \frac{\frac{40}{4+\pi} }{4} \right)^2 + \pi \left( \frac{10\left( \frac{40}{4+\pi}\right)}{2\pi} \right)^2 = 3.50

\end{aligned}
\end{equation}
$


a.) We can conclude that the maximum area will be attained if the entire wire is used only in circle.
b.) The area is minimum when $\displaystyle x = \frac{40}{4+\pi}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...