Friday, June 10, 2016

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 32

If f(π3)=4 and f(π3)=2, and let g(x)=f(x)sinx and h(x)=cosxf(x).

Find (a) g(π3) and (b) h(π3).

a. ) g(x)=f(x)sinx


g(x)=f(x)ddx(sinx)+(sinx)ddx(f(x))Using Product Ruleg(x)=f(x)cosx+f(x)sinxSubstitute the given valueg(π3)=f(π3)cos(π3)+f(π3)sin(π3)Simplify the equationg(π3)=(4)(12)+(2)(32)Simplify the equationg(π3)=23



b.) h(x)=cosxf(x)



h(x)=f(x)ddx(cosx)[cosxddxf(x)](f(x))2Apply Quotient Ruleh(x)=f(x)(sinx)f(x)cosx(f(x))2Substitute given valueh(x)=f(π3)sin(π3)f(π3)cos(π3)(f(π3))2Simplify the equationh(π3)=(4)(32)(2)(12)(4)2Simplify the equationh(π3)=23+116Simplify the equationh(π3)=11638

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...