Friday, June 10, 2016

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 32

If $\displaystyle f \left( \frac{\pi}{3} \right) = 4$ and $\displaystyle f'\left( \frac{\pi}{3} \right) = -2$, and let $g(x) = f(x) \sin x$ and $\displaystyle h(x) = \frac{\cos x}{f(x)} $.

Find (a) $\displaystyle g'\left( \frac{\pi}{3} \right)$ and (b) $\displaystyle h' \left( \frac{\pi}{3} \right)$.

a. ) $g(x) = f(x) \sin x$


$
\begin{equation}
\begin{aligned}

g'(x) =& f(x) \frac{d}{dx} (\sin x) + (\sin x) \frac{d}{dx} (f(x))
&& \text{Using Product Rule}
\\
\\
g'(x) =& f(x) \cos x + f'(x) \sin x
&& \text{Substitute the given value}
\\
\\
g'\left( \frac{\pi}{3} \right) =& f\left( \frac{\pi}{3} \right) \cos \left( \frac{\pi}{3} \right) + f' \left( \frac{\pi}{3} \right) \sin \left( \frac{\pi}{3} \right)
&& \text{Simplify the equation}
\\
\\
g'\left( \frac{\pi}{3} \right) =& -(4)\left( \frac{1}{2} \right) + (-2) \left( \frac{\sqrt{3}}{2} \right)
&& \text{Simplify the equation}
\\
\\
g' \left( \frac{\pi}{3} \right) =& 2 - \sqrt{3}
&&

\end{aligned}
\end{equation}
$



b.) $\displaystyle h(x) = \frac{\cos x}{f(x)}$



$
\begin{equation}
\begin{aligned}

h'(x) =& \frac{\displaystyle f(x) \frac{d}{dx} (\cos x) - \left[ \cos x \frac{d}{dx} f(x) \right]}{(f(x))^2}
&& \text{Apply Quotient Rule}
\\
\\
h'(x) =& \frac{f(x) (- \sin x) - f'(x) \cos x}{(f(x))^2}
&& \text{Substitute given value}
\\
\\
h'(x) =& \frac{\displaystyle -f \left( \frac{\pi}{3} \right) \sin \left( \frac{\pi}{3} \right) - f'\left( \frac{\pi}{3} \right) \cos \left( \frac{\pi}{3} \right)}{ \displaystyle \left( f\left( \frac{\pi}{3} \right)\right)^2}
&& \text{Simplify the equation}
\\
\\
h'\left( \frac{\pi}{3} \right) =& \frac{\displaystyle (4) \left( \frac{\sqrt{3}}{2} \right) - (-2) \left( \frac{1}{2} \right)}{(4)^2}
&& \text{Simplify the equation}
\\
\\
h'\left( \frac{\pi}{3} \right) =& \frac{-2 \sqrt{3} + 1}{16}
&& \text{Simplify the equation}
\\
\\
h'\left( \frac{\pi}{3} \right) =& \frac{1}{16} - \frac{\sqrt{3}}{8}
&& \text{}
\\
\\
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...