Thursday, June 9, 2016

College Algebra, Chapter 2, 2.3, Section 2.3, Problem 48

Solve the equation $1 + \sqrt{x} = \sqrt{1+x^2} $ graphically on the interval $[-1,5]$. State each answer correct to two decimals.



Based from the graph, the equation $1 + \sqrt{x}$ and $\sqrt{1+x^2}$ is equal when $x \approx 0$ and $x \approx 2.20$
By solving the exact value,

$
\begin{equation}
\begin{aligned}
1 + \sqrt{x} &= \sqrt{1+x^2} \\
\\
1 + 2\sqrt{x} + x &= 1 + x^2 && \text{Square both sides}\\
\\
2\sqrt{x} + x &= x^2 && \text{Subtract } 1\\
\\
2\sqrt{x} &= x^2 - x && \text{Subtract } x \\
\\
4x &= x^4 - 2x^3 + x^2 && \text{Square both sides}\\
\\
x^4 - 2x^3 + x^2 - 4x &= 0 && \text{Subtract } 4x\\
\\
x\left( x^3 - 2x^2 + x - 4 \right) &= 0 && \text{Factor out } x\\
\\
x = 0 \text{ and }x^3 - 2x^2 + x - 4 &= 0 && \text{Zero product property}
\end{aligned}
\end{equation}
$


By using calculator the solutions $x^3 - 2x^2 + x - 4 = 0$ are $x = 2.3146, \quad x = 0.1572+1.305i, \quad $ and $x = -0.1572 - 1.305i$
Thus, the real solution for the equation is...
$x = 0$ and $x = 2.3146$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...