Wednesday, June 22, 2016

Calculus of a Single Variable, Chapter 8, 8.6, Section 8.6, Problem 42

To evaluate the integral problem: int_0^(pi/2) xsin(2x) dx ,we may first solve for its indefinite integral. Indefinite integral are written in the form of int f(x) dx = F(x) +C
where: f(x) as the integrand
F(x) as the anti-derivative function
C as the arbitrary constant known as constant of integration
We follow a formula from basic integration table to determine the indefinite integral function F(x) . For the integrals with logarithm, the problem resembles the formula:
int x sin(ax) dx= -(xcos(ax))/a+sin(ax)/a^2 +C .
By comparing x sin(ax) with xsin(2x) , we determine that a= 2 .
Plug-in a=2 to the integral formula, we get:
int_0^(pi/2) xsin(2x) dx=-(xcos((2)x))/(2)+sin((2)x)/(2)^2|_0^(pi/2)
=-(xcos(2x))/2+sin(2x)/4|_0^(pi/2)
After solving the indefinite integral from, we may apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
-(xcos(2x))/2+sin(2x)/4|_0^(pi/2) =[-((pi/2) *cos(2*(pi/2)))/2+sin(2*(pi/2))/4]-[-(0*cos(2*0))/2+sin(2*0)/4 ]
=[-((pi/2) *cos(pi ))/2+sin(pi) /4]-[-(0*cos(0))/2+sin(0)/4 ]
=[-(pi*(-1))/4+0 /4]-[-(0*1)/2+(0)/4 ]
=[pi/4+0]-[0+0]
= [pi/4] - [0]
=pi/4

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...