Wednesday, June 29, 2016

Find lim x-> infinite. f(x) = (3x/(e^2x + 7x^2))^(1/x)

We are asked to find lim_(x->infty) ((3x)/(e^(2x)+7x^2))^(1/x) :
First, use the fact that the limit of a product is the product of limits to get:
=lim_(x->infty)3^(1/x) * lim_(x->infty)((x)/(e^(2x)+7x^2))^(1/x)
Note that lim_(x->infty)3^(1/x)=3^(lim_(x->infty)1/x)=3^0=1
Now for the remaining factor write as:
=lim_(x->infty)e^(ln((x)/(e^(2x)+7x^2))^(1/x)
Use a property of logarithms (ln is the natural log function) to get:
=lim_(x->infty)e^((ln((x)/(e^(2x)+7x^2))/x)
=e^(lim_(x->infty)((ln((x)/(e^(2x)+7x^2))/x)
The limit is indeterminate, so use L'hopital's rule:
d/(dx) (ln((x)/(e^(2x)+7x^2))/x)=-(e^(-2x)+2e^(2x)+7x^2)/(x(e^(2x)+7x^2))
so we have
=e^(lim_(x->infty) -(e^(-2x)+2e^(2x)+7x^2)/(x(e^(2x)+7x^2))
=e^(-lim_(x->infty)(e^(-2x)+2e^(2x)+7x^2)/(xe^(2x)+7x^3)
Divide the argument through by xe^(2x) to get:

e^(-2/1)=1/e^2

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...