Wednesday, June 22, 2016

sum_(n=0)^oo (2/3)^n Determine the convergence or divergence of the series.

The given series sum_(n=0)^oo (2/3)^n is in a form of the geometric series.
 Recall that the sum of geometric series follows the formula: sum_(n=1)^oo a*r^(n-1) .
or with an index shift: sum_(n=0)^oo a*r^n = a+a*r + a*r^2 +...
The convergence test for the geometric series follows the conditions:
a) If |r|lt1  or -1 ltrlt 1 then the geometric series converges to sum_(n=0)^oo a*r^n =sum_(n=1)^oo a*r^(n-1)= a/(1-r) .
b) If |r|gt=1 then the geometric series diverges.
By comparing   sum_(n=0)^o(2/3)^n or sum_(n=0)^oo1*(2/3)^n with the geometric series form sum_(n=0)^oo a*r^n , we determine the corresponding values as:
a=1 and r= 2/3 .
The r= 2/3 falls within the condition |r|lt1 since |2/3|lt1 or |0.67| lt1 .
Note: 2/3 ~~0.67 .
By applying the formula: sum_(n=0)^oo a*r^n= a/(1-r) , we determine that the given geometric series will converge to a value:
sum_(n=1)^oo(2/3)*(2/3)^(n -1) =1/(1-2/3)
                                  =1/(3/3-2/3)
                                  =1/(1/3)
                                  =1*(3/1)
                                  = 3

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...