Saturday, January 9, 2016

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 36

Determine $y''$ of $x^4 + y^4 = a^4$ by using implicit
differentiation.

Solving for 1st Derivative, where $a$ is a constant


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (x^4) + \frac{d}{dx} (y^4) =& \frac{d}{dx} (a^4)
\\
\\
4x^3 + 4y^3 \frac{dy}{dx} =& 0
\\
\\
4y^3 \frac{dy}{dx} =& -4x^3
\\
\\
\frac{\displaystyle \cancel{4y^3} \frac{dy}{dx}}{\cancel{4y^3}} =& \frac{-\cancel{4}x^3}{\cancel{4}y^3}
\\
\\
\frac{dy}{dx} =& \frac{-x^3}{y^3}

\end{aligned}
\end{equation}
$


Solving for 2nd Derivative


$
\begin{equation}
\begin{aligned}

\frac{d^2y}{dx^2} =& \frac{\displaystyle (y^3) \frac{d}{dx} (-x^3) - (-x^3) \frac{d}{dx} (y^3)}{(y^3)^2}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle (y^3) (-3x^2) - (-x^3)(3y^2) \frac{dy}{dx}}{y^6}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle -3x^2 y^3 + 3x^3 y^2 \frac{dy}{dx}}{y^6}
\qquad \qquad \text{We know that $\large \frac{dy}{dx} = \frac{-x^3}{y^3}$}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle -3x^2 y^3 + (3x^3y^2)\left( \frac{-x^3}{y^3} \right)}{y^6}
\\
\\
\frac{d^2y}{dx^2} =& \frac{\displaystyle -3x^2 y^3 - \left( \frac{3x^6}{y} \right) }{y^6}
\\
\\
\frac{d^2y}{dx^2} =& \frac{-3x^2 y^4 - 3x^6}{(y)(y^6)}
\\
\\
\frac{d^2y}{dx^2} =& \frac{-3x^2 (y^4 + x^4)}{y^7}
\qquad \qquad \text{We know that $x^4 + y^4 = a^4$}
\\
\\
\frac{d^2y}{dx^2} =& \frac{-3x^2 (a^4)}{y^7}
\\
\\
\frac{d^2y}{dx^2} =& \frac{-3a^4x^2}{y^7} \text{ or } y'' = \frac{-3a^4 x^2}{y^7}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...