Saturday, January 9, 2016

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 36

Determine y of x4+y4=a4 by using implicit
differentiation.

Solving for 1st Derivative, where a is a constant


ddx(x4)+ddx(y4)=ddx(a4)4x3+4y3dydx=04y3dydx=4x3\cancel4y3dydx\cancel4y3=\cancel4x3\cancel4y3dydx=x3y3


Solving for 2nd Derivative


d2ydx2=(y3)ddx(x3)(x3)ddx(y3)(y3)2d2ydx2=(y3)(3x2)(x3)(3y2)dydxy6d2ydx2=3x2y3+3x3y2dydxy6We know that dydx=x3y3d2ydx2=3x2y3+(3x3y2)(x3y3)y6d2ydx2=3x2y3(3x6y)y6d2ydx2=3x2y43x6(y)(y6)d2ydx2=3x2(y4+x4)y7We know that x4+y4=a4d2ydx2=3x2(a4)y7d2ydx2=3a4x2y7 or y=3a4x2y7

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...