Friday, January 8, 2016

Precalculus, Chapter 1, 1.2, Section 1.2, Problem 68

Find the intercepts of the equation $\displaystyle y = \frac{x^2 - 4}{2x}$ and test for symmetry.

$x$-intercepts:


$
\begin{equation}
\begin{aligned}

y =& \frac{x^2 - 4}{2x}
&& \text{Given equation}
\\
0 =& \frac{x^2 - 4}{2x}
&& \text{To find the $x$-intercept, we let } y = 0
\\
0 =& x^2 - 4
&&
\\
4 =& x^2
&&
\\
\pm 2 =& x
&&

\end{aligned}
\end{equation}
$


The $x$-intercepts are $(-2,0)$ and $(2,0)$

$y$-intercepts:


$
\begin{equation}
\begin{aligned}

y =& \frac{x^2 - 4}{2x}
&& \text{Given equation}
\\
y =& \frac{(0)^2 - 4}{2(0)}
&& \text{To find the $y$-intercept, we let } x = 0
\\
y =& \frac{-4}{0}
&&

\end{aligned}
\end{equation}
$


There is no real solutions for $y$

Test for symmetry

$x$-axis:


$
\begin{equation}
\begin{aligned}

y =& \frac{x^2 - 4}{2x}
&& \text{Given equation}
\\
-y =& \frac{x^2 - 4}{2x}
&& \text{To test for $x$-axis symmetry, replace $y$ by $-y$ and see if the equation is still the same}

\end{aligned}
\end{equation}
$


The equation changes so it is not symmetric to the $x$-axis

$y$-axis:


$
\begin{equation}
\begin{aligned}

y =& \frac{x^2 - 4}{2x}
&& \text{Given equation}
\\
y =& \frac{(-x)^2 - 4}{2(-x)}
&& \text{To test for $y$-axis symmetry, replace$ x$ by $-x$ and see if the equation is still the same}
\\
y =& - \frac{x^2 - 4}{2x}
&&

\end{aligned}
\end{equation}
$


The equation changes so it is not symmetric to the $x$-axis

Origin:


$
\begin{equation}
\begin{aligned}

y =& \frac{x^2 - 4}{2x}
&& \text{Given equation}
\\
-y =& \frac{(-x)^2 - 4}{2(-x)}
&& \text{To test for origin symmetry, replace both $x$ by $-x$ and y by $-y$ and see if the equation is still the same}
\\
-y =& - \frac{x^2 -4}{2x}
\\
y =& \frac{x^2 -4}{2x}
&&

\end{aligned}
\end{equation}
$


The equation is still the same so it is symmetric to the origin.

Therefore, the equation $\displaystyle y = \frac{x^2 - 4}{2x}$ has an intercepts $(-2,0)$ and $(2,0)$ and it is symmetry to the origin.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...