Wednesday, August 5, 2015

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 68

Find the integral $\displaystyle \int^{10}_{-10} \frac{2e^x}{\sin h x + \cos hx} dx$


$
\begin{equation}
\begin{aligned}

& \int^{10}_{-10} \frac{2e^x}{\sin h x + \cos hx} dx = \int^{10}_{-10} \frac{2e^x}{e^x} dx
&& \text{Apply sum of $\cos h$ and $\sin h (\cos hx + \sin hx = e^x)$}
\\
\\
& \int^{10}_{-10} \frac{2e^x}{\sin h x + \cos hx} dx = \int^{10}_{-10} 2 dx
&&
\\
\\
& \int^{10}_{-10} \frac{2e^x}{\sin h x + \cos hx} dx = \left. 2x \right|^{10}_{-10}
&&
\\
\\
& \int^{10}_{-10} \frac{2e^x}{\sin h x + \cos hx} dx = 2(10) - 2 (-10)
&&
\\
\\
& \int^{10}_{-10} \frac{2e^x}{\sin h x + \cos hx} dx = 20 + 20
&&
\\
\\
& \int^{10}_{-10} \frac{2e^x}{\sin h x + \cos hx} dx = 40
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...