Saturday, August 1, 2015

int x/sqrt(x^2-6x+5) Complete the square and find the indefinite integral

intx/sqrt(x^2-6x+5)dx
Let's complete the square of the denominator of the integrand,
=intx/sqrt((x-3)^2-4)dx
Now apply integral substitution:u=x-3
=>du=1dx
=int(u+3)/sqrt(u^2-2^2)du
Now apply the sum rule,
=intu/sqrt(u^2-2^2)du+int3/sqrt(u^2-2^2)du
Now let's evaluate the first integral ,
intu/sqrt(u^2-4)du
Apply integral substitution:v=u^2-4
=>dv=2udu
=int1/sqrt(v)(dv)/2
Take the constant out and apply the power rule,
=1/2(v^(-1/2+1)/(-1/2+1))
=1/2(2/1)v^(1/2)
=sqrt(v)
Substitute back v=u^2-4
=sqrt(u^2-4)
Now let's evaluate the second integral,
int3/sqrt(u^2-2^2)du
Take the constant out,
=3int1/sqrt(u^2-2^2)du
Use the standard integral:int1/sqrt(x^2-a^2)dx=ln|x+sqrt(x^2-a^2)|
=3ln|u+sqrt(u^2-2^2)| ,
So add the result of the two integrals,
sqrt(u^2-4)+3ln|u+sqrt(u^2-4)|
Substitute back u=x-3 and add a constant C to the solution,
=sqrt((x-3)^2-4)+3ln|x-3+sqrt((x-3)^2-4)|+C
=sqrt(x^2-6x+9-4)+3ln|x-3+sqrt(x^2-6x+9-4)|+C
=sqrt(x^2-6x+5)+3ln|x-3+sqrt(x^2-6x+5)|+C
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...