Monday, August 10, 2015

Calculus and Its Applications, Chapter 1, 1.8, Section 1.8, Problem 60

Find $y'''$ of $\displaystyle y = \frac{3x - 1}{2x + 3}$
By applying Quotient Rule,

$
\begin{equation}
\begin{aligned}
y' &= \frac{(2x + 3) \cdot \frac{d}{dx} (3x - 1) - (3x - 1) \cdot \frac{d}{dx} (2x + 3) }{(2x + 3)^2}\\
\\
y' &= \frac{(2x + 3)(3) - (3x - 1)(2)}{(2x + 3)^2} = \frac{6x + 9 -6x + 2}{(2x + 3)^2} = \frac{11}{(2x + 3)^2}
\end{aligned}
\end{equation}
$


We have $y' = 11(2x + 3)^{-2}$, so

$
\begin{equation}
\begin{aligned}
y'' &= \frac{d}{dx} \left[ 11(2x + 3)^{-2} \right] \\
\\
&= 11(-2)(2x +3)^{-2-1} \cdot \frac{d}{dx} (2x +3) \\
\\
&= -22 (2x + 3)^{-3} (2) \\
\\
&= -44 (2x + 3)^{-3}
\end{aligned}
\end{equation}
$


Again, by applying Chain Rule,

$
\begin{equation}
\begin{aligned}
y''' &= \frac{d}{dx} \left[ -44 ( 2x + 3 )^{-3} \right]\\
\\
&= -44(-3)(2x + 3)^{-3-1} \cdot \frac{d}{dx} (2x + 3)\\
\\
&= 132 (2x + 3)^{-4} (2) = 264(2x + 3)^{-4} \text{ or } \frac{264}{(2x + 3)^4}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...