Tuesday, December 9, 2014

Single Variable Calculus, Chapter 7, Review Exercises, Section Review Exercises, Problem 62

Suppose that the function $c(t) = k (e^{-at} - e^{-bt})$

a.) Show that $\displaystyle \lim_{t \to \infty} c(t) = 0$


$
\begin{equation}
\begin{aligned}

\lim_{t \to \infty} c(t) =& \lim_{t \to \infty} k (e^{-at} - e^{-bt}) = \lim_{t \to \infty} k \left( \frac{1}{e^{at}} - \frac{1}{e^{bt}} \right)
\\
\\
=& k \left( \frac{1}{e^{a(\infty)} - \frac{1}{e^{b(\infty)}}} \right)
\\
\\
=& k \left( \frac{1}{\infty} - \frac{1}{\infty} \right)
\\
\\
=& k (0- 0)
\\
\\
=& 0

\end{aligned}
\end{equation}
$



b.) Find $c'(t)$


$
\begin{equation}
\begin{aligned}

\text{If } c(t) =& k (e^{-at} - e^{-bt}) \text{ then}
\\
\\
c'(t) =& k (e^{-at} (-a) - e^{-bt} (-b))
\\
\\
c'(t) =& k (be^{-bt} - ae^{-at})

\end{aligned}
\end{equation}
$


c.) When is the rate equal to 0?

When $c'(t) = 0$


$
\begin{equation}
\begin{aligned}

0 =& k (be^{-bt} - ae^{-at})
\\
\\
0 =& be^{-bt} - ae^{-at}
\\
\\
ae^{-at} =& be ^{-bt}
\\
\\
\frac{a}{b} =& \frac{e^{-bt}}{e^{-at}}
\\
\\
\frac{a}{b} =& e^{t(-b - (-a))}
\\
\\
\frac{a}{b} =& e^{t(a - b)}

\end{aligned}
\end{equation}
$


If we take the natural logarithm, we have


$
\begin{equation}
\begin{aligned}

\ln \left( \frac{a}{b} \right) =& t (a - b)(\ln e)
\\
\\
\ln \left( \frac{a}{b} \right) =& t(a - b)(1)
\\
\\
t =& \frac{\displaystyle \ln \left( \frac{a}{b} \right)}{a - b}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...