Thursday, December 18, 2014

College Algebra, Chapter 5, 5.3, Section 5.3, Problem 10

Evaluate the expression $\displaystyle \log \frac{1}{\sqrt{1000}}$


$
\begin{equation}
\begin{aligned}

\log \frac{1}{\sqrt{1000}} =& \log 1 - \log \sqrt{1000}
&& \text{Law of Logarithms } \log_a \left( \frac{A}{B} \right) = \log_a A - \log_a B
\\
\\
\log \frac{1}{\sqrt{1000}} =& 0 - \log \sqrt{1000}
&& \text{Properties of Logarithms } \log_a 1 = 0
\\
\\
\log \frac{1}{\sqrt{1000}} =& \frac{-3}{2}
&& \text{Because } 10^{\frac{-3}{2}} = \frac{1}{\sqrt{1000}}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...