Thursday, December 25, 2014

College Algebra, Chapter 9, 9.6, Section 9.6, Problem 32

Determine the first three terms in the expansion $\displaystyle \left( x + \frac{1}{x} \right)^{40}$
Recall that the Binomial Theorem is defined as
Substituting $a = x$ and $\displaystyle b = \frac{1}{x}$ gives the first three terms are

$
\left(
\begin{array}{c}
40\\
0
\end{array}
\right)
(x)^{40},
\quad
\left(
\begin{array}{c}
40\\
1
\end{array}
\right)
(x)^{39} \left( \frac{1}{x} \right),
\quad
\left(
\begin{array}{c}
40\\
1
\end{array}
\right)
(x)^{38} \left( \frac{1}{x} \right)^2
$

From the 40th row of the Pascal's Triangle, we obtain that

$
\begin{equation}
\begin{aligned}
\left(
\begin{array}{c}
40\\
0
\end{array}
\right)
&= \frac{40!}{0!(40-0)!} = 1\\
\\
\left(
\begin{array}{c}
40\\
1
\end{array}
\right)
&= \frac{40!}{1!(40-1)!} = 40\\
\\
\left(
\begin{array}{c}
40\\
2
\end{array}
\right)
&= \frac{40!}{2!(40-2)!} = 780
\end{aligned}
\end{equation}
$

Thus, the first three terms are

$
\begin{equation}
\begin{aligned}
&= (1)(x)^{40}, \quad (40)(x)^{39} \left(\frac{1}{x}\right), \quad (780)(x)^{38} \left(\frac{1}{x}\right)^2\\
\\
&= x^{40}, \quad 40x^{38}, \quad, 780x^{36}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...