Saturday, December 20, 2014

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 75

Determine the equations of both lines that are tangent to the curve $y = 1+x^3$ and are parallel to the line $12x -y = 1$


$
\begin{equation}
\begin{aligned}
\text{Given:}&&& \text{Curve}\quad y = 1+x^3\\
\phantom{x}&&& \text{Line} \quad 12- y = 1
\end{aligned}
\end{equation}
$


The slope$(m)$ of the curve is equal to the slope$(m)$ of the line because there are parallel.
Using the formula $mx+b$, we take the equation of the line $12x-y=1$ or $y = 12x-1$ the slope is 12.


$
\begin{equation}
\begin{aligned}
y &= 1 + x^3\\
\\
y'&= \frac{d}{dx} (1) + \frac{d}{dx}(x^3)
&& \text{Derive each terms}\\
\\
y'&= 0 + 3x^2
&& \text{Simplify the equation}\\
\\
y'&= 3x^2\\
\end{aligned}
\end{equation}
$

Let $y' =$ slope$(m)$


$
\begin{equation}
\begin{aligned}
m &= 12\\
\\
m &= 3x^2
&& \text{Substitute the value of slope}(m)\\
\\
\frac{12}{3} &= \frac{3x^2}{3}
&& \text{Divide both sides by 3}\\
\\
x^2 &= 4
&& \text{Take the square root of both sides}\\
\\
\sqrt{x^2} &= \pm \sqrt{4}
&& \text{Simplify the equation}\\
\\
x &= \pm 2
\end{aligned}
\end{equation}
$


Substitute the values of $x$ to the equation of the curve to solve for $y$


$
\begin{equation}
\begin{aligned}
y &= 1 + x^3
&&& \phantom{x} && y &= 1 + x^3\\
\\
y &= 1 + (2)^3
&&& \Longleftarrow\text{(Simplify the equation)} \Longrightarrow && y &= 1 + (-2)^3\\
\\
y &= 9
&&& \phantom{x} && y &= -7\\
\\

\end{aligned}
\end{equation}
$


Using point slope form
@ $x = 2$ $y = 9 $ $m = 12 $


$
\begin{equation}
\begin{aligned}
y - y_1 &= m(x-x_1)
&& \text{Substitute the value of } x, y \text{ and slope}(m)\\
\\
y - 9 &= 12(x-2)
&& \text{Distribute 12 in the equation}\\
\\
y - 9 &= 12x - 24
&& \text{Add 9 to each sides}\\
\\
y &= 12x - 24 + 9
&& \text{Combine like terms}\\
\end{aligned}
\end{equation}
$


The first equation of the tangent line is $y = 12x - 15$

@ $x = -2$ $y = -7$ $m = 12$

$
\begin{equation}
\begin{aligned}
y - y_1 &= m(x-x_1)
&& \text{Substitute the value of }x,y\text{ and slope}(m)\\
\\
y+7 &= 12(x+2)
&& \text{Distribute 12 in the equation}\\
\\
y+7 &= 12x+24
&& \text{Add -7 to each sides}\\
\\
y &= 12x+24-7
&& \text{Combine like terms}
\end{aligned}
\end{equation}
$


The second equation of the tangent line is $y = 12x + 17$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...