Tuesday, December 9, 2014

College Algebra, Chapter 5, 5.2, Section 5.2, Problem 80

Supposed that $f(x) = \ln (\ln (\ln x))$. (a) Find the domain of $f$. (b) Find the inverse function of $f$.

a.) To determine the domain of $f$, we want $\ln (\ln x) > 0$


$
\begin{equation}
\begin{aligned}

\ln (\ln x) >& 0
\\
\\
e^{\ln (\ln x)} >& e^0
\\
\\
\ln x >& 1
\\
\\
e^{\ln x} >& e^1
\\
\\
x >& e^1

\end{aligned}
\end{equation}
$


Thus, the domain of $f$ is $(e, \infty)$

b.) To find the inverse of $f$, we set $y = f(x)$


$
\begin{equation}
\begin{aligned}

y =& \ln (\ln ( \ln x))
&& \text{Solve for } x
\\
\\
e^y =& e^{\ln (\ln ( \ln x))}
&&
\\
\\
e^y =& \ln (\ln x)
&&
\\
\\
e^{e^y} =& e^{\ln ( \ln x)}
&&
\\
\\
e^{e^y} =& \ln x
&&
\\
\\
e^{e^{e^y}} =& e^{\ln x}
&&
\\
\\
e^{e^{e^y}} =& x
&& \text{Interchanging $x$ and $y$}
\\
\\
y =& e^{e^{e^x}}
&&
\end{aligned}
\end{equation}
$


Thus, the inverse of $f$ is $f^{-1} (x) = e^{e^{e^x}}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...