Thursday, December 11, 2014

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 51

Below is the figure of a circular arc of length $s$ and a chord of length $d$ both subtended by a central angle $\theta$. Find $\displaystyle \lim\limits_{\theta \to 0^+}\frac{s}{d}$




We will use the formula for arc to make $s$ in terms of $r \text{ and } \theta$, so...
$s = r \theta \qquad \Longleftarrow \text{ Equation1}$

Also, we can divide the triangle like this





$
\begin{equation}
\begin{aligned}
\sin \left(\frac{\theta}{2}\right) &= \frac{\frac{d}{2}}{r}\\
\\
\sin \left(\frac{\theta}{2}\right) &= \frac{d}{2r}\\
\\
d &= 2r \sin \left( \frac{\theta}2{}\right) && \Longleftarrow \text{ Equation 2}
\end{aligned}
\end{equation}
$


Plugging in Equations 1 and 2 to the limit we get,


$
\begin{equation}
\begin{aligned}
\lim\limits_{\theta \to 0^+} \frac{s}{d} &= \lim\limits_{\theta \to 0^+} \frac{\cancel{r}\theta}{2\cancel{r}\sin\left(\frac{\theta}{2}\right)}\\
\\
\lim\limits_{\theta \to 0^+} \frac{s}{d} &= \lim\limits_{\theta \to 0^+} \frac{\theta}{2\sin\left(\frac{\theta}{2}\right)}\\
\\
\lim\limits_{\theta \to 0^+} \frac{s}{d} &= \lim\limits_{\theta \to 0^+} \frac{\left(\frac{1}{2}\right) \theta}{\cancel{\left(\frac{1}{2}\right)}\cancel{2}\sin\left(\frac{\theta}{2}\right)} \\
\\
&= \lim\limits_{\theta \to 0^+} \frac{\frac{\theta}{2}}{\sin \left( \frac{\theta}{2}\right)}
\end{aligned}
\end{equation}
$

Recall that $\displaystyle \lim\limits_{\theta \to 0^+} \frac{\sin \theta}{\theta}= 1$
Therefore, $\displaystyle \lim\limits_{\theta \to 0^+} \frac{s}{d} = 1$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...