Tuesday, December 30, 2014

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 6

The graph function $h$ is given, state the value of each quantity, if it exists. If it does not exist, explain why.


$
\begin{equation}
\begin{aligned}
\text{a.) }& \lim\limits_{x \rightarrow -3^-} h(x) &
\text{b.) }& \lim\limits_{x \rightarrow -3^+} h(x)&
\text{c.) }& \lim\limits_{x \rightarrow -3} h(x)\\

\text{d.) }& h(-3) &
\text{e.) }& \lim\limits_{x \rightarrow 0^-} h(x) &
\text{f.) }& \lim\limits_{x \rightarrow 0^+} h(x) \\

\text{g.) }& \lim\limits_{x \rightarrow 0} h(x) &
\text{h.) }& h(0) &
\text{i.) }& \lim\limits_{x \rightarrow 2} h(x) \\

\text{j.) }& h(2)
\end{aligned}
\end{equation}
$






a. Referring to the graph given $\lim\limits_{x \rightarrow -3^-} h(x) = 4$

b. Referring to the graph given $\lim\limits_{x \rightarrow -3^+} h(x) = 4$

c. Referring to the graph given $\lim\limits_{x \rightarrow -3} h(x) = 4$

d. Referring to the graph given $h(-3)$ does not exist because the value at that point is not defined, it is an empty circle.

e. Referring to the graph given $\lim\limits_{x \rightarrow 0^-} h(x) = 1$

f. Referring to the graph given $\lim\limits_{x \rightarrow 0^+} h(x) = -1$

g. Referring to the graph given $\lim\limits_{x \rightarrow 0} h(x)$ does not exist because
$\lim\limits_{x \rightarrow 0^+} h(x)$ does not equal $\lim\limits_{x \rightarrow 0^-} h(x)$

h. Referring to the graph given $h(0) = 1$

i. Referring to the graph given $\lim\limits_{x \rightarrow 2} h(x) = 2$

j. Referring to the graph given $h(2)$ does not exist because the function is not defined at that point.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...