Monday, August 11, 2014

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 94

a.) Suppose that $F(x) = f(x) g(x)$, where $f$ and $g$ have derivatives of all orders.
$\quad$ Show that $F'' = f''g + 2f'g' + fg''$

b.) Find similar formulas $F'''$ and $F^{(4)}$
c.) Guess a formula for $F^{(n)}$


$
\begin{equation}
\begin{aligned}
\text{a.) } F(x) &= f(x)g(x)\\
F'(x) &= f'(x)g(x) + f(x)g'(x)\\
F''(x) &= [f''(x)g(x)+f'(x)g'(x)] + [f'(x)g'(x)+f(x)g''(x)]\\
F''(x) &= f''(x)g(x) + 2 f'(x)g'(x) + f(x)g''(x)\\
F''(x) &= f''g+2f'g'+fg''
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
\text{b.) } F'''(x) &= [f'''g+f''g']+2[f''g'+f'g'']+[f'g''+fg''']\\
F'''(x) &= f'''g+f''g'+2f''g'+2f'g''+f'g''+fg'''\\
F'''(x) &= f'''g+3f''g'+3f'g''+fg'''\\
F^{(4)} (x) &= [ f^{(4)}g+f'''g']+3[f'''g'+f''g'']+3[f''g''+f'g''']+[f'g'''+fg^{(4)}]\\
F^{(4)}(x) &= f^{(4)}g+f'''g'+3f'''g'+3f''g''+3f''g''+3f'g'''+f'g'''+fg^{(4)}\\
F^{(4)}(x) &= f^{(4)}g+4f'''g'+6''g''+4f'g'''+fg^{(4)}
\end{aligned}
\end{equation}
$


c.) Based on what we obtain from previous problem, $F^{(n)}$ seems to have a formula of
$\displaystyle F^{(n)} = f^{(n)}g+nf^{(n-a)}g^{(1)} + \frac{n(n-1)f^{(n-2)}g^{(2)}}{2}+ \cdots + nf^{(1)} g^{(n-1)}+fg^{(n)}$

$\displaystyle F^{(n)} = \sum\limits_{k =0}^n \frac{n!}{k!(n-l)!} f^{(n-k)} g^{(k)}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...