Sunday, August 31, 2014

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 48

Determine the derivative of the function $\displaystyle g(x) = \int^{x^2}_{\tan x} \frac{1}{\sqrt{2 + t^4}} dt$

Apply Properties of Integral


$
\begin{equation}
\begin{aligned}

& \int^c_a f(x) dx + \int^b_c f(x) dx = \int^b_a f(x) dx, \text{ So we have}
\\
\\
& g(x) = \int^1_{\tan x} \frac{1}{\sqrt{2 + t^4}} dt + \int^{x^2}_1 \frac{1}{\sqrt{2 + t^4}} dt
\\
\\
& g(x) = - \int^{\tan x}_1 \frac{1}{\sqrt{2 + t^4}} dt + \int^{x^2}_1 \frac{1}{\sqrt{2 + t^4}} dt

\end{aligned}
\end{equation}
$


Let $\displaystyle u_1 = \tan x_1 \frac{du_1}{dx} = \sec ^2 x$ and $\displaystyle u_2 = x^2, \frac{du_2}{dx} = 2x$, then


$
\begin{equation}
\begin{aligned}

g'(x) =& - \frac{d}{dx} \left( \int^{\tan x}_1 \frac{1}{\sqrt{2 + t^4}} dt + \int^{x^2}_1 \frac{1}{\sqrt{2 + t^4}} dt \right) \frac{du}{dx}
\\
\\
g'(x) =& - \frac{1}{\sqrt{2 + u^4_1}} \cdot \frac{du_1}{dx} + \frac{1}{\sqrt{2 + u^4_2}} \cdot \frac{du_2}{dx}
\\
\\
g'(x) =& \left( \frac{-1}{\sqrt{2 + (\tan x)^4}} \cdot \sec ^2 x \right) + \left( \frac{1}{\sqrt{2 + (x^2)^4}} \cdot 2x \right)
\\
\\
g'(x) =& \frac{- \sec^2 x}{\sqrt{2 + \tan^4 x}} + \frac{2x}{\sqrt{2 + x^8}}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...