Sunday, August 31, 2014

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 48

Determine the derivative of the function g(x)=x2tanx12+t4dt

Apply Properties of Integral


caf(x)dx+bcf(x)dx=baf(x)dx, So we haveg(x)=1tanx12+t4dt+x2112+t4dtg(x)=tanx112+t4dt+x2112+t4dt


Let u1=tanx1du1dx=sec2x and u2=x2,du2dx=2x, then


g(x)=ddx(tanx112+t4dt+x2112+t4dt)dudxg(x)=12+u41du1dx+12+u42du2dxg(x)=(12+(tanx)4sec2x)+(12+(x2)42x)g(x)=sec2x2+tan4x+2x2+x8

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...