Sunday, August 17, 2014

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 96

Find the values of $m$ and $b$ that make
$
f(x) = \left\{
\begin{array}{c}
x^2 & \text{if} & x \leq 2\\
mx+b & \text{if} & x > 2
\end{array}\right.
$


In order for the function to be differentiable everywhere, the function should be continuous
on every values of $x$, that is, the left and right hand limits as $x$ approaches 2 should be equal.

$f'_- (2) = f'_+ (2)$

$
\begin{equation}
\begin{aligned}
\lim\limits_{h \to 0^-} \frac{f(x+h)-f(x)}{h} &=
\lim\limits_{h \to 0^+} \frac{f(x+h)-f(x)}{h}\\
\lim\limits_{h \to 0^-} \frac{(x+h)^2 -(x)^2}{h} &=
\lim\limits_{h \to 0^+} \frac{m(x+h)+b-[mx+b]}{h}\\
\lim\limits_{h \to 0^-} \frac{\cancel{x^2}+2xh+h^2-\cancel{x^2}}{h} &=
\lim\limits_{h \to 0^+} \frac{\cancel{mx}+mh+\cancel{b}-\cancel{mx}-\cancel{b}}{h}\\
\lim\limits_{h \to 0^-} \frac{\cancel{h}(2x+h)}{\cancel{h}} &=
\lim\limits_{h \to 0^+} \frac{m\cancel{h}}{\cancel{h}}\\
\lim\limits_{h \to 0^-} (2x+h) &=
\lim\limits_{h \to 0^+} m\\
2x+0 &= m
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
m & = 2x \quad ; \quad x = 2\\
m &= 2(2)\\
m &= 4
\end{aligned}
\end{equation}
$


Solving for $b$,
$x^2 = mx+b$


$
\begin{equation}
\begin{aligned}
(2)^2 &= 4(2) +b\\
b &= 4-8\\
b &= -4
\end{aligned}
\end{equation}
$

Therefore, the values of $m$ and $b$ that will make $f(x)$ differentiable every where are 4 and -4
respectively.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...