Friday, August 15, 2014

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 38

Evaluate the expression $\displaystyle \frac{5-i}{3+4i}$ in the form of $a + bi$.


$
\begin{equation}
\begin{aligned}
&= \frac{5-i}{3+4i}\\
\\
&= \left( \frac{5-i}{3+4i} \right) \left( \frac{3-4i}{3-4i} \right) && \text{Multiply by the complex conjugate of the denominator}
\\
&= \frac{(5-i)(3-4i)}{3^2 - (4i)^2} && \text{Use FOIL method in the denominator}\\
\\
&= \frac{15-20i-3i+4i^2}{9-(16 i^2)} && \text{Recall that } i^2 = -1\\
\\
&= \frac{15-20i-3i+4(-1)}{9-(16(-1))} && \text{Simplify}\\
\\
&= \frac{11-23i}{25} && \text{Group terms}\\
\\
&= \frac{11}{25} - \frac{23}{25}i
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...