Tuesday, August 19, 2014

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 18

Given to solve,
int sqrt(4+x^2) dx
using the Trig Substitutions we can solve these type of integrals easily and the solution is as follows

for sqrt(a+bx^2) we can take x= sqrt(a/b) tan(u)
so ,For
int sqrt(4+x^2) dx
the x= sqrt(4/1)tan(u)= 2tan(u)
=> dx= 2sec^(2) (u) du
so,
int sqrt(4+x^2) dx
= int sqrt(4+(2tan(u))^2) (2sec^(2) (u) du)
= int sqrt(4+4(tan(u))^2) (2sec^(2) (u) du)
=int sqrt(4(1+(tan(u))^2)) (2sec^(2) (u) du)
= int 2sqrt(1+tan^2(u))(2sec^(2) (u) du)
= int 2sec(u)(2sec^(2) (u) du)
= int 4sec^(3) (u) du
= 4int sec^(3) (u) du
by applying the Integral Reduction
int sec^(n) (x) dx
= (sec^(n-1) (x) sin(x))/(n-1) + ((n-2)/(n-1)) int sec^(n-2) (x) dx
so ,
4int sec^(3) (u) du
= 4[(sec^(3-1) (u) sin(u))/(3-1) + ((3-2)/(3-1)) int sec^(3-2) (u)du]
= 4[(sec^(2) (u) sin(u))/(2) + ((1)/(2)) int sec (u)du]
=4[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]
but x= 2tan(u)
=> x/2 = tan(u)
u = tan^(-1) (x/2)
so,
4[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]
=4[(sec^(2) ( tan^(-1) (x/2)) sin( tan^(-1) (x/2)))/(2) + (1/2) (ln(tan( tan^(-1) (x/2))+sec( tan^(-1) (x/2))))]
=4[(sec^(2) ( tan^(-1) (x/2)) sin( tan^(-1) (x/2)))/(2) + (1/2) (ln((x/2))+sec( tan^(-1) (x/2)))] +c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...