Friday, August 29, 2014

Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 20

Use the guidelines of curve sketching to sketch the curve. $\displaystyle y = 2\sqrt{x}-x$

The guidelines of Curve Sketching
A. Domain.
We know that $f(x)$ is a root function that is defined only for positive value of $x$. Therefore, the domain is $[0,\infty)$

B. Intercepts.
Solving for $y$-intercept, when $x = 0$
$y = 2 \sqrt{0} - 0 = 0 $
Solving for $x$-intercept, when $y = 0$

$
\begin{equation}
\begin{aligned}
0 & = 2 \sqrt{x} - x \\
\\
x &= 2x^{\frac{1}{2}} = 2^2\\
\\
x &= \sqrt{4}
\end{aligned}
\end{equation}
$


C. Symmetry.
The function is not symmetric to either $y$-axis or origin by using symmetry test.

D. Asymptotes.
The function has no asymptotes

E. Intervals of Increase or Decrease.
If we take the derivative of $f(x)$

$
\begin{equation}
\begin{aligned}
y' &= 2\left( \frac{1}{2\sqrt{x}} \right) - 1\\
\\
y' &= \frac{1}{\sqrt{x}} - 1
\end{aligned}
\end{equation}
$


when $y' = 0$,

$
\begin{equation}
\begin{aligned}
0 &= \frac{1}{\sqrt{x}} -1\\
\\
\sqrt{x} &= 1\\
\\
x &= 1^2
\end{aligned}
\end{equation}
$

The critical number is $x = 1$
Hence, the intervals of increase or decrease are.

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f'(x) & f\\
\hline\\
x < 1 & + & \text{increasing on } [0, 1)\\
\hline\\
x > 1 & - & \text{decreasing on } (1, \infty)\\
\hline
\end{array}
$



F. Local Maximum and Minimum Values.
Since $f'(x)$ decreases from positive to negative at $x=1$, then $f(1) = 1$ is a local maximum.

G. Concavity and Points of Inflection.

$
\begin{equation}
\begin{aligned}
\text{if } f'(x) &= \frac{1}{\sqrt{x}} - 1 = x^{\frac{-1}{2}} - 1 , \text{ then}\\
\\
f''(x) &= \frac{-1}{2}x^{\frac{-3}{2}}\\
\\
f''(x) &= \frac{-1}{2\sqrt{x^3}} \\
\\
\\
\\
\text{when } f''(x) &= 0 \\
\\
0 &= \frac{-1}{2 \sqrt{x^3}}\\
\\
f''(x) &= 0 \qquad \text{ does not exist, therefore, we don't have inflection points.}
\end{aligned}
\end{equation}
$


Thus, the concavity in the domain of $f$ is...

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f''(x) & \text{Concavity}\\
\hline\\
x \geq 0 & - & \text{Downward}\\
\hline
\end{array}
$


H. Sketch the Graph.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...