Saturday, August 30, 2014

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 9

a.) Determine the slope of the tangent to the curve $y = 3 + 4x ^2 - 2x^3$ at the point where $x = a$

Using the equation

$ \displaystyle m = \lim \limits_{h \to 0} \frac{f(a + h) - f(a)}{h}$

Let $f(x) = 3 + 4x^2 - 2x^3$. So the slope of the tangent to the curve at the point where $x = a$


$
\begin{equation}
\begin{aligned}

\displaystyle m &= \lim \limits_{h \to 0} \frac{f(a + h) - f(a)}{h}\\
\\
\displaystyle m &= \lim \limits_{h \to 0} \frac{3 + 4 (a + h)^2 - 2 (a + h)^3 - (3 + 4 a^2 - 2a^3)}{h}
&& \text{ Substitute value of $a$}\\
\\
\displaystyle m &= \lim \limits_{h \to 0} \frac{3 + 4 (a^2 + 2ah + h^2) - 2 (a^3 + 3a^2 h + 3ah^2 + h^3) - 3 - 4a^2 + 2a^3}{h}
&& \text{Expand and simplify}\\
\\
\displaystyle m &= \lim \limits_{h \to 0} \frac{\cancel{3} + \cancel{4a^2} + 8ah + 4h^2 - \cancel{2a^3} - 6 a^2 h - 6ah^2 - 2h^3 - \cancel{3} - \cancel{4 a^2} + \cancel{2a^3}}{h}
&& \text{Combine like terms}\\
\\
\displaystyle m &= \lim \limits_{h \to 0} \frac{8ah + 4h^2 - 6a^2 h - 6ah^2 - 2h^3}{h}
&& \text{Factor the numerator}\\
\\
\displaystyle m &= \lim \limits_{h \to 0} \frac{\cancel{h} (8a + 4h - 6a^2 - 6ah - 2h^2)}{\cancel{h}}
&& \text{Cancel out like terms}\\
\\
\displaystyle m &= \lim \limits_{h \to 0} (8a + 4h - 6a^2 - 6ah - 2h^2) = 8a + 4(0) - 6a^2 - 6a(0) - 2(0)^2 = 8a-6a^2
&& \text{Evaluate the limit}\\
\end{aligned}
\end{equation}
$

Therefore,
The slope of the tangent line is $m = 8a - 6a^2$

b.) Determine the equations of the tangent lines at the points $(1, 5)$ and $(2, 3)$

Solving for the slope of the tangent line at $(1, 5)$

Using the equation of slope of the tangent in part (a), we have $a = 1$ So the slope is


$
\begin{equation}
\begin{aligned}

m =& 8a - 6a^2 && \\
\\
m =& 8(1) - 6(1)^2
&& \text{Substitute value of $a$ and simplify}\\
\\
m =& 2
&& \text{Slope of the tangent line at $(1, 5)$}

\end{aligned}
\end{equation}
$


Using point slope form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m(x - x_1) && \\
\\
y - 5 =& 2 (x - 1)
&& \text{Substitute value of $x, y$ and $m$}\\
\\
y =& 2x - 2 + 5
&& \text{Combine like terms}\\
\\
y =& 2x + 3
\end{aligned}
\end{equation}
$

Therefore,
The equation of the tangent line at $(1,5)$ is $ y = 2x + 3$
Solving for the slope of the tangent line at $(2, 3)$

Using the equation of slope of the tangent in part (a), we have $a = 2$ so the slope is


$
\begin{equation}
\begin{aligned}

m =& 8a - 6a^2\\
&& \\
m =& 8(2) - 6(2)^2
&& \text{Substitute value of $a$ and simplify}\\
\\
m =& -8
&& \text{Slope of the tangent line at $(2, 3)$}
\end{aligned}
\end{equation}
$


Using point slope form

$
\begin{equation}
\begin{aligned}

y - y-1 =& m(x - x_1)
&& \\
\\
y - 3 =& -8 (x - 2)
&& \text{Substitute value of $x, y$ and $m$}\\
\\
y =& -8x + 16 + 3
&& \text{Combine like terms}\\
\\
y =& -8x+19


\end{aligned}
\end{equation}
$


Therefore,
The slope of the tangent line at $(2,3)$ is $y = -8x+19$
c.) Draw the graph of the curve and both tangent lines on a common screen.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...