Friday, August 15, 2014

Calculus and Its Applications, Chapter 1, 1.2, Section 1.2, Problem 64

Determine the limit $\displaystyle \lim_{x \to -2} \frac{x^3 + 8}{x^2- 4}$ then identify
if the limit exists and if the limit does not exist, state the fact.

When we rewrite the function, we get

$
\begin{equation}
\begin{aligned}
\lim_{x \to -2} \frac{x^3 + 8}{x^2- 4} &= \lim_{x \to -2} \frac{\cancel{(x + 2)}(x^2 - 2x + 4)}{\cancel{(x + 2)}(x - 2)}\\
\\
&= \lim_{x \to -2} \frac{x^2 - 2x + 4}{x - 2}
\end{aligned}
\end{equation}
$


The Theoreom on Limits of Rational Functions and Limit Principle tell us that we can substitute
to fin the limit,

$
\begin{equation}
\begin{aligned}
\lim_{x \to -2} \frac{x^2 - 2x + 4}{x - 2} &= \frac{(-2)^2 - 2(-2) + 4}{-2 - 2}\\
\\
&= \frac{4+4+4}{-2-2} \\
\\
&= \frac{12}{-4}\\
\\
&= -3
\end{aligned}
\end{equation}
$

Therefore, the $\displaystyle \lim_{x \to -2} \frac{x^3 + 8}{x^2 - 4}$ exist and is equal to $-3$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...