Friday, August 8, 2014

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 27

Find the derivative of $\displaystyle f(x) = x^4$ using the definition and the domain of its derivative.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad f'(x) &= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
&&
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{(x + h)^4 - x^4}{h}
&& \text{Substitute $f(x + h)$ and $f(x)$}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\cancel{x^4} + 4x^3 + 6x^2 h^2 + 4xh^3 + h^4 -\cancel{x^4}}{h}
&& \text{Expand the equation and combine like terms}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{4x^3h + 6x^2 h^2 + 4xh^3 + h^4}{h}
&& \text{Factor the numerator}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\cancel{h} (4x^3 + 6x^2h + 4xh^2 + h^3)}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} (4x^3 + 6x^2 h + 4xh^2 +h ) = 4x^3 + 6x^2(0) + 4x(0)^2 + (0)^3
&& \text{Evaluate the limit}

\end{aligned}
\end{equation}
$


$\qquad \fbox{$f'(x) = 4x^3$}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...