Saturday, August 9, 2014

Calculus of a Single Variable, Chapter 8, 8.2, Section 8.2, Problem 58

To evaluate the given integral problem int e^(sqrt(2x))dx us u-substituion, we may let:
u = 2x then du = 2 dx or (du)/2 = dx .
Plug-in the values u = 2x and dx = (du)/2 , we get:
int e^(sqrt(2x))dx =int e^(sqrt(u))* (du)/2
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int e^(sqrt(u))* (du)/2=1/2 int e^(sqrt(u)) du
Apply another set of substitution, we let:
w = sqrt(u)
Square both sides of w =sqrt(u), we get: w^2 =u
Take the derivative on each side, it becomes: 2w dw = du
Plug-in w =sqrt(u) and du = 2w dw , we get:
1/2 int e^(sqrt(u)) du =1/2 int e^(w) * 2w dw
= 1/2 * 2 inte^(w) *w dw
= int e^w * w dw .
To evaluate the integral further, we apply integration by parts:int f* g' = f*g - int g *f'
Let: f =w then f' = dw
g' = e^w dw then g = e^w
Applying the formula for integration by parts, we get:
int e^w * w dw = w*e^w - int e^w dw
= we^w -e^w +C
Recall we let: w =sqrt(u) and u = 2x then w =sqrt(2x) .
Plug-in w=sqrt(2x) on we^w -e^w +C , we get the complete indefinite integral as:
int e^(sqrt(2x))dx =sqrt(2x) e^(sqrt(2x)) -e^(sqrt(2x)) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...