Monday, December 2, 2013

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 23

Determine the $\displaystyle \lim \limits_{x \to 7} \frac{\sqrt{x + 2} - 3}{x - 7}$, if it exists.


$
\begin{equation}
\begin{aligned}
\lim \limits_{x \to 7} \frac{\sqrt{x + 2} - 3}{x - 7} \cdot \frac{\sqrt{x + 2} + 3}{\sqrt{x + 2} + 3} &=
\lim \limits_{x \to 7} \frac{x + 2 - 9}{(x - 7)(\sqrt{x + 2} + 3)} = \lim \limits_{x \to 7} \frac{x - 7}{(x - 7)(\sqrt{x + 2} + 3)}
&& \text{ Multiply numerator and denominator by $(\sqrt{x + 2} + 3)$ then simplify. }\\
\\
& = \lim \limits_{x \to 7} \frac{\cancel{x - 7 }}{\cancel{x - 7 }(\sqrt{x + 2} + 3)} = \lim \limits_{x \to 7} \frac{1}{\sqrt{x +2 } + 3}
&& \text{ Cancel out like terms}\\
\\
&= \frac{1}{\sqrt{7 + 2 } + 3} = \frac{1}{\sqrt{9}+3} = \frac{1}{3+3}
&& \text{ Substitute value of $x$ and simplify}\\
\\
& = \frac{1}{6}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...