Show that $\displaystyle \tan h (x + y) = \frac{\tan h x + \tan hy}{1 + \tan h x \tan hy}$
Solving for the left-hand side of the equation
Using Hyperbolic Function
$
\begin{equation}
\begin{aligned}
\tan hx =& \frac{\sin hx}{\cos hx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\\
\\
\tan h (x + y) =& \frac{e^{(x + y)} - e^{-(x + y)} }{e^{(x + y)} + e^{-(x + y)}}
\\
\\
\tan h (x + y) =& \frac{e^x e^y - e^{-x} e^{-y}}{e^x e^y + e^{-x} e^{-y}}
\end{aligned}
\end{equation}
$
Using Hyperbolic Identities
$
\begin{equation}
\begin{aligned}
& \cos hx + \sin hx = e^x \text{ and } \cos hx - \sin hx = e^{-x}
\\
\\
& \tan h(x + y) = \frac{(\cos hx + \sin hx)(\cos hy + \sin hy) - (\cos hx - \sin hx)(\cos hy - \sin hy)}{(\cos hx + \sin hx)(\cos hy + \sin hy) + (\cos hx - \sin hx)(\cos hy - \sin hy)}
\\
\\
& \tan h(x + y) = \frac{\cos hx \cos hy + \cos hx \sin hy + \sin hx \cos hy + \sin hx \sin hy - (\cos hx \cos hy - \cos hx \sin hy)(- \sin hx \cos hy + \sin hx \sin hy)}{\cos hx \cos hy + \cancel{\cos hx \sin hy} + \cancel{\sin hx \cos hy} + \sin hx + \sin hy + \cos hx \cos hy - \cancel{\cos hx \sin hy} - \cancel{\sin hx \cos hy} + \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{\cancel{\cos hx \cos hy} + \cos hx \sin hy + \sin hx \cos hy + \cancel{\sin hx \sin hy} - \cancel{\cos hx \cos hy} + \cos hx \sin hy + \sin hx \cos hy - \cancel{\sin hx \sin hy}}{2 \cos hx \cos hy + 2 \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{2 \cos hx \sin hy + 2 \sin hx \cos hy}{2 \cos hx \cos hy + 2 \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{\cancel{2} (\cos hx \sin hy + \sin hx \cos hy)}{\cancel{2} (\cos hx \cos hy + \sin hx \sin hy)}
\\
\\
& \tan h(x + y) = \frac{\cos hx \sin hy + \sin hx \cos hy}{\cos hx \cos hy + \sin hx \sin hy} \cdot \frac{\displaystyle \frac{1}{\cos hx \cos hy}}{\displaystyle \frac{1}{\cos hx \cos hy}}
\\
\\
& \tan h(x + y) = \frac{\displaystyle \frac{\cancel{\cos hx} \sin hy}{\cancel{\cos hx} \cos hy} + \frac{\sin hx \cancel{\cos hy}}{\cos hx \cancel{\cos hy}}}{\displaystyle \frac{\cancel{\cos hx \cos hy}}{\cancel{\cos hx \cos hy}} + \frac{\sin hx \sin hy}{\cos hx \cos hy}}
\\
\\
& \tan h(x + y) = \frac{\displaystyle \frac{\sin hy}{\cos hy} + \frac{\sin hx}{\cos hx}}{\displaystyle 1 + \frac{\sin hx}{\cos hx} \cdot \frac{\sin hy}{\cos hy}}
\\
\\
& \tan h(x + y) = \frac{\tan hy + \tan hx}{1 + \tan hx \tan hy}
\\
\\
& \text{or}
\\
\\
& \tan h(x + y) = \frac{\tan hx + \tan hy}{1 + \tan hx \tan hy}
\end{aligned}
\end{equation}
$
Monday, December 30, 2013
Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 14
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
In Celie's tenth letter to God, she describes seeing her daughter in a store with a woman. She had not seen her daughter since the night...
-
Let's start with terms: "expected value" means the average amount that you would win or lose over a large number of plays. The...
No comments:
Post a Comment