Monday, December 30, 2013

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 14

Show that tanh(x+y)=tanhx+tanhy1+tanhxtanhy

Solving for the left-hand side of the equation

Using Hyperbolic Function


tanhx=sinhxcoshx=exexex+extanh(x+y)=e(x+y)e(x+y)e(x+y)+e(x+y)tanh(x+y)=exeyexeyexey+exey


Using Hyperbolic Identities


coshx+sinhx=ex and coshxsinhx=extanh(x+y)=(coshx+sinhx)(coshy+sinhy)(coshxsinhx)(coshysinhy)(coshx+sinhx)(coshy+sinhy)+(coshxsinhx)(coshysinhy)tanh(x+y)=coshxcoshy+coshxsinhy+sinhxcoshy+sinhxsinhy(coshxcoshycoshxsinhy)(sinhxcoshy+sinhxsinhy)coshxcoshy+\cancelcoshxsinhy+\cancelsinhxcoshy+sinhx+sinhy+coshxcoshy\cancelcoshxsinhy\cancelsinhxcoshy+sinhxsinhytanh(x+y)=\cancelcoshxcoshy+coshxsinhy+sinhxcoshy+\cancelsinhxsinhy\cancelcoshxcoshy+coshxsinhy+sinhxcoshy\cancelsinhxsinhy2coshxcoshy+2sinhxsinhytanh(x+y)=2coshxsinhy+2sinhxcoshy2coshxcoshy+2sinhxsinhytanh(x+y)=\cancel2(coshxsinhy+sinhxcoshy)\cancel2(coshxcoshy+sinhxsinhy)tanh(x+y)=coshxsinhy+sinhxcoshycoshxcoshy+sinhxsinhy1coshxcoshy1coshxcoshytanh(x+y)=\cancelcoshxsinhy\cancelcoshxcoshy+sinhx\cancelcoshycoshx\cancelcoshy\cancelcoshxcoshy\cancelcoshxcoshy+sinhxsinhycoshxcoshytanh(x+y)=sinhycoshy+sinhxcoshx1+sinhxcoshxsinhycoshytanh(x+y)=tanhy+tanhx1+tanhxtanhyortanh(x+y)=tanhx+tanhy1+tanhxtanhy

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...