Monday, December 30, 2013

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 14

Show that $\displaystyle \tan h (x + y) = \frac{\tan h x + \tan hy}{1 + \tan h x \tan hy}$

Solving for the left-hand side of the equation

Using Hyperbolic Function


$
\begin{equation}
\begin{aligned}

\tan hx =& \frac{\sin hx}{\cos hx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\\
\\
\tan h (x + y) =& \frac{e^{(x + y)} - e^{-(x + y)} }{e^{(x + y)} + e^{-(x + y)}}
\\
\\
\tan h (x + y) =& \frac{e^x e^y - e^{-x} e^{-y}}{e^x e^y + e^{-x} e^{-y}}

\end{aligned}
\end{equation}
$


Using Hyperbolic Identities


$
\begin{equation}
\begin{aligned}

& \cos hx + \sin hx = e^x \text{ and } \cos hx - \sin hx = e^{-x}
\\
\\
& \tan h(x + y) = \frac{(\cos hx + \sin hx)(\cos hy + \sin hy) - (\cos hx - \sin hx)(\cos hy - \sin hy)}{(\cos hx + \sin hx)(\cos hy + \sin hy) + (\cos hx - \sin hx)(\cos hy - \sin hy)}
\\
\\
& \tan h(x + y) = \frac{\cos hx \cos hy + \cos hx \sin hy + \sin hx \cos hy + \sin hx \sin hy - (\cos hx \cos hy - \cos hx \sin hy)(- \sin hx \cos hy + \sin hx \sin hy)}{\cos hx \cos hy + \cancel{\cos hx \sin hy} + \cancel{\sin hx \cos hy} + \sin hx + \sin hy + \cos hx \cos hy - \cancel{\cos hx \sin hy} - \cancel{\sin hx \cos hy} + \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{\cancel{\cos hx \cos hy} + \cos hx \sin hy + \sin hx \cos hy + \cancel{\sin hx \sin hy} - \cancel{\cos hx \cos hy} + \cos hx \sin hy + \sin hx \cos hy - \cancel{\sin hx \sin hy}}{2 \cos hx \cos hy + 2 \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{2 \cos hx \sin hy + 2 \sin hx \cos hy}{2 \cos hx \cos hy + 2 \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{\cancel{2} (\cos hx \sin hy + \sin hx \cos hy)}{\cancel{2} (\cos hx \cos hy + \sin hx \sin hy)}
\\
\\
& \tan h(x + y) = \frac{\cos hx \sin hy + \sin hx \cos hy}{\cos hx \cos hy + \sin hx \sin hy} \cdot \frac{\displaystyle \frac{1}{\cos hx \cos hy}}{\displaystyle \frac{1}{\cos hx \cos hy}}
\\
\\
& \tan h(x + y) = \frac{\displaystyle \frac{\cancel{\cos hx} \sin hy}{\cancel{\cos hx} \cos hy} + \frac{\sin hx \cancel{\cos hy}}{\cos hx \cancel{\cos hy}}}{\displaystyle \frac{\cancel{\cos hx \cos hy}}{\cancel{\cos hx \cos hy}} + \frac{\sin hx \sin hy}{\cos hx \cos hy}}
\\
\\
& \tan h(x + y) = \frac{\displaystyle \frac{\sin hy}{\cos hy} + \frac{\sin hx}{\cos hx}}{\displaystyle 1 + \frac{\sin hx}{\cos hx} \cdot \frac{\sin hy}{\cos hy}}
\\
\\
& \tan h(x + y) = \frac{\tan hy + \tan hx}{1 + \tan hx \tan hy}
\\
\\
& \text{or}
\\
\\
& \tan h(x + y) = \frac{\tan hx + \tan hy}{1 + \tan hx \tan hy}



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...