Show that $\displaystyle \tan h (x + y) = \frac{\tan h x + \tan hy}{1 + \tan h x \tan hy}$
Solving for the left-hand side of the equation
Using Hyperbolic Function
$
\begin{equation}
\begin{aligned}
\tan hx =& \frac{\sin hx}{\cos hx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\\
\\
\tan h (x + y) =& \frac{e^{(x + y)} - e^{-(x + y)} }{e^{(x + y)} + e^{-(x + y)}}
\\
\\
\tan h (x + y) =& \frac{e^x e^y - e^{-x} e^{-y}}{e^x e^y + e^{-x} e^{-y}}
\end{aligned}
\end{equation}
$
Using Hyperbolic Identities
$
\begin{equation}
\begin{aligned}
& \cos hx + \sin hx = e^x \text{ and } \cos hx - \sin hx = e^{-x}
\\
\\
& \tan h(x + y) = \frac{(\cos hx + \sin hx)(\cos hy + \sin hy) - (\cos hx - \sin hx)(\cos hy - \sin hy)}{(\cos hx + \sin hx)(\cos hy + \sin hy) + (\cos hx - \sin hx)(\cos hy - \sin hy)}
\\
\\
& \tan h(x + y) = \frac{\cos hx \cos hy + \cos hx \sin hy + \sin hx \cos hy + \sin hx \sin hy - (\cos hx \cos hy - \cos hx \sin hy)(- \sin hx \cos hy + \sin hx \sin hy)}{\cos hx \cos hy + \cancel{\cos hx \sin hy} + \cancel{\sin hx \cos hy} + \sin hx + \sin hy + \cos hx \cos hy - \cancel{\cos hx \sin hy} - \cancel{\sin hx \cos hy} + \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{\cancel{\cos hx \cos hy} + \cos hx \sin hy + \sin hx \cos hy + \cancel{\sin hx \sin hy} - \cancel{\cos hx \cos hy} + \cos hx \sin hy + \sin hx \cos hy - \cancel{\sin hx \sin hy}}{2 \cos hx \cos hy + 2 \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{2 \cos hx \sin hy + 2 \sin hx \cos hy}{2 \cos hx \cos hy + 2 \sin hx \sin hy}
\\
\\
& \tan h(x + y) = \frac{\cancel{2} (\cos hx \sin hy + \sin hx \cos hy)}{\cancel{2} (\cos hx \cos hy + \sin hx \sin hy)}
\\
\\
& \tan h(x + y) = \frac{\cos hx \sin hy + \sin hx \cos hy}{\cos hx \cos hy + \sin hx \sin hy} \cdot \frac{\displaystyle \frac{1}{\cos hx \cos hy}}{\displaystyle \frac{1}{\cos hx \cos hy}}
\\
\\
& \tan h(x + y) = \frac{\displaystyle \frac{\cancel{\cos hx} \sin hy}{\cancel{\cos hx} \cos hy} + \frac{\sin hx \cancel{\cos hy}}{\cos hx \cancel{\cos hy}}}{\displaystyle \frac{\cancel{\cos hx \cos hy}}{\cancel{\cos hx \cos hy}} + \frac{\sin hx \sin hy}{\cos hx \cos hy}}
\\
\\
& \tan h(x + y) = \frac{\displaystyle \frac{\sin hy}{\cos hy} + \frac{\sin hx}{\cos hx}}{\displaystyle 1 + \frac{\sin hx}{\cos hx} \cdot \frac{\sin hy}{\cos hy}}
\\
\\
& \tan h(x + y) = \frac{\tan hy + \tan hx}{1 + \tan hx \tan hy}
\\
\\
& \text{or}
\\
\\
& \tan h(x + y) = \frac{\tan hx + \tan hy}{1 + \tan hx \tan hy}
\end{aligned}
\end{equation}
$
Monday, December 30, 2013
Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 14
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
No comments:
Post a Comment