Sunday, December 15, 2013

sum_(n=0)^oo (-1)^n/(n!) Determine the convergence or divergence of the series.

We may apply the Ratio Test to determine the convergence or divergence of the series sum_(n=0)^oo (-1)^n/(n!) .
 In Ratio test, we determine the limit as:
 lim_(n-gtoo)|a_(n+1)/a_n| = L
  Then, we follow the conditions:
 a) L lt1 then the series is absolutely convergent
 b) Lgt1 then the series is divergent.
 c) L=1 or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
 
For the series sum_(n=0)^oo (-1)^n/(n!) , we have a_n=(-1)^n/(n!) .
Then, we may let a_(n+1) =(-1)^(n+1)/((n+1)!)
 We set up the limit as:
lim_(n-gtoo) |((-1)^(n+1)/((n+1)!)) /((-1)^n/(n!))|
  To simplify the function, we flip the bottom and proceed to multiplication:
|((-1)^(n+1)/((n+1)!)) /((-1)^n/(n!))|=|(-1)^(n+1)/((n+1)!) * (n!)/(-1)^n|
Apply Law of Exponent: x^(n+m) = x^n*x^m and (n+1)! = n!(n+1)
|((-1)^n(-1)^1)/(n!(n+1)) * (n!)/(-1)^n|
Cancel out the common factors (-1)^n and n! .
|(-1)^1/(n+1)|
=|-1/(n+1)|
=1/(n+1)
Applying |((-1)^(n+1)/((n+1)!)) /((-1)^n/(n!))|=1/(n+1) , we get:
lim_(n-gtoo) |((-1)^(n+1)/((n+1)!)) /((-1)^n/(n!))|
=lim_(n-gtoo)1/(n+1)
=(lim_(n-gtoo)1)/(lim_(n-gtoo)(n+1))
= 1 /oo
= 0
 The limit value  L=0 satisfies the condition: L lt1 .
 Therefore, the series sum_(n=0)^oo (-1)^n/(n!) is absolutely convergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...