Tuesday, December 17, 2013

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 14

intcos(theta)cos^5(sin(theta))d theta
Apply integral substitution,
Let u=sin(theta)
=>du=cos(theta)d theta
=intcos^5(u)du
Rewrite the above integrand as,
=intcos^4(u)cos(u)du
Now use the identity: cos^2(x)=1-sin^2(x)
=int(1-sin^2(u))^2cos(u)du
Apply the integral substitution,
Let v=sin(u)
=>dv=cos(u)du
=int(1-v^2)^2dv
=int(1-2v^2+v^4)dv
=int1dv-2intv^2dv+intv^4dv
=v-2(v^3/3)+v^5/5
Substitute back v=sin(u)
=sin(u)-2/3sin^3(u)+1/5sin^5(u)
Substitute back u=sin(theta)
=sin(sin(theta))-2/3sin^3(sin(theta))+1/5sin^5(sin(theta))
Add a constant C to the solution,
=sin(sin(theta))-2/3sin^3(sin(theta))+1/5sin^5(sin(theta))+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...