Saturday, December 21, 2013

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 60

Find the volume generated by rotating the region bounded by $y = e^x$, $x = 0$ and $y = \pi$ about $y$-axis. Use cylindrical shells method.
By using horizontal strips, notice that the strips have distance from the $x$-axis as $y$ such that if you rotate these lengths about the $x$-axis, you'll have a circumference of $c = 2 \pi y$. Also the height of the strips resembles the height of the cylinder as... $H = x_{\text{right}} - x_{\text{left}} = \ln y - 0 = \ln y$. Thus, the volume is...


$
\begin{equation}
\begin{aligned}
V &= \int^\pi_1 c(y) H(y) dy\\
\\
V &= \int^\pi_1 2\pi y(\ln y) dy\\
\\
V &= 2 \pi \int^\pi_1 y \ln y dy
\end{aligned}
\end{equation}
$


By using integration by parts, if we let $u = \ln y$ and $ dv = y dy$, then,
$\displaystyle du = \frac{1}{y} dy$ and $\displaystyle v = \frac{y^2}{2}$

$
\begin{equation}
\begin{aligned}
V &= 2\pi \int^\pi_1 y \ln y dy = uv - \int v du = 2 \pi \left[ \ln y \left( \frac{y^2}{2} \right) - \int \frac{y^2}{2} \left( \frac{dy}{y} \right) \right]\\
\\
&= 2 \pi \left[ \frac{y^2}{2} \ln y - \frac{1}{2} \frac{y^2}{2} \right]\\
\\
&= \frac{2 \pi y^2}{2} \left[ \ln y - \frac{1}{2} \right] \qquad = \pi y^2 \left[ \ln y - \frac{1}{2} \right]
\end{aligned}
\end{equation}
$


Evaluating for $y = 1$ to $y = \pi$

$
\begin{equation}
\begin{aligned}
&= \pi (\pi)^2 \left[ \ln \pi - \frac{1}{2} \right] - \pi (1)^2 \left[ \ln (1) - \frac{1}{2} \right] \\
\\
&= \pi^3 \left[ \ln \pi -\frac{1}{2} \right] + \frac{\pi}{2} \text{ cubic units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...