Monday, December 16, 2013

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 38

Suppose that an object with weight $w$ is dragged along a horizontal plane by a force acting along a rope attracted to the objet. If the rope makes an angle $\theta$ with the plane then the magnitude of the force;
$\displaystyle F = \frac{\mu\omega}{\mu \sin \theta + \cos \theta}$

where $\mu$ is a constant called the coefficient of friction.
a.) Find the rate of change of $F$ with respect to $\theta$.
b.) When is this rate of change equal to 0?
c.) If $ w= 50 lb$ and $\mu = 0.6$, draw the graph of $F$ as a function of $\theta$ and use it to locate the value of $\theta$ for which $\displaystyle \frac{d_F}{d\theta} = 0$. Is the value consistent with your answer to part(b)?



$
\begin{equation}
\begin{aligned}
\text{a.) } \frac{d_F}{d\theta} &= \frac{[\mu\sin\theta+\cos\theta] \frac{d}{d\theta}(\mu \omega) - \mu \omega \frac{d}{d\theta}[\mu \sin \theta + \cos \theta]}{[\mu \sin \theta + \cos \theta]^2}\\
\\
\frac{d_F}{d\theta} &= \frac{0 - \mu \omega [ \mu \cos \theta + (-\sin\theta)]}{[\mu \sin \theta + cos \theta]^2}\\
\\
\frac{d_F}{d\theta} &= \frac{\mu \omega [\sin \theta - \mu \cos \theta]}{[\mu \sin \theta + \cos \theta]^2}\\
\\

\end{aligned}
\end{equation}
$


$\displaystyle \text{b.) } \frac{d_F}{d\theta} = 0 = \frac{\mu \omega [\sin \theta - \mu \cos \theta]}{[\mu \sin \theta + \cos \theta]^2}$

$
\begin{equation}
\begin{aligned}
\\
\mu \omega [\sin \theta - \mu \cos \theta] &= 0 \\
\\
\sin \theta - \mu \cos \theta &= 0\\
\\
\sin \theta &= \mu \cos \theta\\
\\
\frac{\sin \theta}{\cos \theta} &= \mu\\
\\
\tan \theta &= \mu\\
\\
\theta & = \tan^{-1} \mu
\end{aligned}
\end{equation}
$


The rate of change is equal to 0 when $\theta = \tan^{-1} \mu$


$
\begin{equation}
\begin{aligned}
\text{c.) } F &= \frac{\mu \omega}{\mu \sin \theta + \cos \theta} && ; \omega = 50^h, \, \mu = 0.6\\
\\
F &= \frac{50(0.6)}{0.6 \sin \theta+ \cos \theta}\\
\\
F &= \frac{30}{0.6 \sin \theta + \cos \theta}
\end{aligned}
\end{equation}
$




We know that $\displaystyle \frac{d_F}{d\theta} = 0$ when $\theta = \tan^{-1}\mu$ so

$
\begin{equation}
\begin{aligned}
\theta &= \tan^{-1} (0.6) = 0.5404\\
\\
F &= \frac{30}{0.6 \sin \theta + \cos \theta} && ; \text{where } \theta = 0.5404\\
\\
F(\theta) &= \frac{30}{0.6\sin(0.5404)+\cos(0.5404)} = 25.725

\end{aligned}
\end{equation}
$


Based from the graph, our answer in part(b) matches our answer in part(c) since the value of tangent line of that point is zero.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...