Friday, December 27, 2013

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 52

Solve the Logarithmic Equation $\log x + \log (x - 3) = 1$ for $x$.

$
\begin{equation}
\begin{aligned}
\log x + \log (x - 3) &= 1\\
\\
\log x(x -3) &= 1 && \text{Laws of Logarithm } \log_a AB = \log_a A + \log_a B\\
\\
10^{\log x(x -3)} &= 10^1 && \text{Raise 10 to each side}\\
\\
x(x - 3) &= 10 && \text{Property of log}\\
\\
x^2 - 3x &= 10 && \text{Distributive property}\\
\\
x^2 - 3x - 10 & = 0 && \text{Subtract 10 }\\
\\
(x - 5)(x + 2) &= 0 && \text{Factor}
\end{aligned}
\end{equation}
$

Solve for $x$

$
\begin{equation}
\begin{aligned}
x -5 &= 0 &&\text{and}& x + 2 &= 0 \\
\\
x &= 5 &&& x &= -2
\end{aligned}
\end{equation}
$

The only solution in the given equation is $x = 5$, since $x = -2$ will give a negative value.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...