Thursday, December 26, 2013

int sqrt(x)/(x-4) dx Use substitution and partial fractions to find the indefinite integral

Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function of f(x)
           C  as the arbitrary constant known as constant of integration
To evaluate the integral problem: int sqrt(x)/(x-4)dx , we may apply u-substitution by letting:
u=sqrt(x) then u^2 =x and 2u du = dx
Plug-in the values, we get:
int sqrt(x)/(x-4)dx=int u/(u^2-4)* 2udu
                  = int (2u^2)/(u^2-4)du
 To simplify, we may apply long division:(2u^2)/(u^2-4) =2 +8/(u^2-4)
To expand 8/(u^2-4) , we may apply partial fraction decomposition.
The pattern on setting up partial fractions will depend on the factors  of the  denominator. The factored form for the difference of perfect squares: (u^2-4)= (u-2)(u+2) .
 
For the linear factor (u-2) , we will have partial fraction: A/(u-2) .
For the linear factor (u+2) , we will have partial fraction: B/(u+2) .
The rational expression becomes:
8/(u^2-4) =A/(u-2) +B/(u+2)
Multiply both side by the LCD =(u-2)(u+2) .
(8/(u^2-4)) *(u-2)(u+2)=(A/(u-2) +B/(u+2)) *(u-2)(u+2)
8=A(u+2) +B(u-2)
We apply zero-factor property on (u-2)(u+2)  to solve for values we can assign on u.
u-2=0 then u=2
u+2 =0 then u =-2
To solve for A , we plug-in u=2 :
8=A(2+2) +B(2-2)
8 =4A+0
8=4A
8/(4) = (4A)/4
A = 2
To solve for B , we plug-in u=-2 :
8=A(-2+2) +B(-2-2)
8 =0 -4B
8=-4B
8/(-4) = (-4B)/(-4)
B = -2
Plug-in A = 2 and B =-2 , we get the partial fraction decomposition:
8/(u^2-4)=2/(u-2) -2/(u+2)
 Then the integral becomes:
int (2u^2)/(u^2-4)du= int [2+8/(u^2-4)]du
                    =int [2 +2/(u-2) -2/(u+2)]du
Apply the basic integration property: int (u+-v+-w) dx = int (u) dx +- int (v) dx+- int (w) dx .
int [2 +2/(u-2) -2/(u+2)]du =int 2du +int 2/(u-2) du int -2/(u+2)du
For the first integral, we may apply basic integration property: int a dx = ax+C.
int 2 du = 2u
For the second and third integral, we may apply  integration formula for logarithm: int 1/u du = ln|u|+C .
int 2/(u-2) du =2ln|u-2|
int 2/(u+2) du =2ln|u+2|
Combining the results, we get:
int (2u^2)/(u^2-4)du = 2u +2ln|u-2| -2ln|u+2| +C
 Apply logarithm property: n*ln|x| = ln|x^n| and ln|x| - ln|y| = ln|x/y|
int (2u^2)/(u^2-4)du = 2u + ln|(u-2)^2| - ln|(u+2)^2| +C
                    = 2u + ln|(u-2)^2/(u+2)^2| +C
Plug-in u =sqrt(x) on 2u + ln|(u-2)^2/(u+2)^2| +C , we get the indefinite integral as:
int sqrt(x)/(x-4)dx =2sqrt(x) +ln|(sqrt(x)-2)^2/(sqrt(x)+2)^2| +C
              OR 2sqrt(x) +ln|(x-4sqrt(x)+4)/(x+4sqrt(x)+4)| +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...