Saturday, December 14, 2013

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 96

Suppose that an object is dropped from a height $96 ft$ tall above the ground. Then its height after $t$ seconds is given by $h = -16t^2 + 96$, where $h$ is measured in feet.

a.) How long will it take to fall half the distance to ground level?


$
\begin{equation}
\begin{aligned}

h =& -16t^2 + 96
&& \text{Model}
\\
\\
\frac{96}{2} =& -16t^2 + 96
&& h = \frac{96}{2} \text{ half the distance to ground level}
\\
\\
16t^2 =& 96 - \frac{96}{2}
&& \text{Add } 16t^2 \text{ and subtract } \frac{96}{2}
\\
\\
t^2 =& \frac{48}{16} = 3
&& \text{Solve for } t
\\
\\
t =& \pm \sqrt{3}
&& \text{Take the square root}
\\
\\
t =& \sqrt{3} \text{ and } t = \sqrt{3}
&& \text{Choose } t > 0
\\
\\
t =& \sqrt{3} \text{ seconds}
&&

\end{aligned}
\end{equation}
$


b.) How long will it take to fall to ground level?


$
\begin{equation}
\begin{aligned}

h =& -16t^2 + 96h = -16t^2 + 96
&& \text{Model}
\\
\\
0 =& -16t^2 + 96
&& h = 0 \text{ ground level}
\\
\\
16t^2 =& 96
&& \text{Add } 16t^2
\\
\\
t^2 =& \frac{96}{16}
&& \text{Divide } 16
\\
\\
t^2 =& 6
&& \text{Simplify}
\\
\\
t =& \pm \sqrt{6}
&& \text{Take the square root}
\\
\\
t =& \sqrt{6} \text{ and } t = - \sqrt{6}
&& \text{Choose } t > 0


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...