Friday, December 13, 2013

Precalculus, Chapter 5, 5.5, Section 5.5, Problem 14

tan(2x)-2cos(x)=0, 0<=x<=2pi
tan(2x)-2cos(x)=0
sin(2x)/cos(2x)-2cos(x)=0
sin(2x)-2cos(2x)cos(x)=0
2sin(x)cos(x)-2cos(2x)cos(x)=0
2cos(x)(sin(x)-cos(2x))=0
using the identitycos(2x)=1-2sin^2(x),
2cos(x)(sin(x)-(1-2sin^2(x)))=0
2cos(x)(sin(x)-1+2sin^2(x))=0
solving each part separately,
cos(x)=0
General solutions are,
x=pi/2+2pin , x=(3pi)/2+2pin
Solutions for the range 0<=x<=2pi are,
x=pi/2 , x=(3pi)/2
2sin^2(x)+sin(x)-1=0
Let sin(x)=y
2y^2+y-1=0
solve using the quadratic formula,
y=(-1+-sqrt(1^2-4*2*(-1)))/(2*2)
y=-1,1/2
substitute back y=sin(x)
sin(x)=-1 , sin(x)=1/2
For sin(x)=-1
General solutions are,
x=(3pi)/2+2pin
Solutions for the range 0<=x<=2pi are,
x=(3pi)/2
For sin(x)=1/2
General solutions are,
x=pi/6+2pin , x=(5pi)/6+2pin
solutions for the range 0<=x<=2pi are,
x=pi/6 , (5pi)/6
Combine all the solutions,
x=pi/2 , (3pi)/2 , pi/6 , (5pi)/6

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...