Monday, September 9, 2019

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 56

Suppose $\displaystyle \lim \limits_{x \to 1} \frac{f(x)}{x^2} = 5$, Find the following limits:
$\displaystyle \text{(a) } \lim \limits_{x \to 0} f(x) \qquad \text{(b) } \lim \limits_{x \to 0} \frac{f(x)}{x}$






$
\begin{equation}
\begin{aligned}

\text{(a) } & \lim \limits_{x \to 0} \frac{f(x)}{x^2} = 5
\qquad
\Longrightarrow
\qquad
\frac{\lim \limits_{x \to 0} f(x) }{ \lim \limits_{x \to 0} x^2} = 5
\qquad
\text{ (Multiplying $\lim \limits_{x \to 0} x^2$ to both sides of the equator) }\\

\phantom{x} & \frac{\lim \limits_{x \to 0} f(x) }{\cancel{ \lim \limits_{x \to 0} x^2}}
\cdot
\cancel{ \lim \limits_{x \to 0} x^2}
= 5 \cdot \lim \limits_{x \to 0} (x^2)\\

\phantom{x} & \lim \limits_{x \to 0} f(x) = 5 \cdot \lim \limits_{x \to 0} x^2\\
\phantom{x} & \lim \limits_{x \to 0} f(x) = 5 \cdot (0)^2 = 0\\
\phantom{x} & \lim \limits_{x \to 0} f(x) = 0\\

\text{(b) } & \lim \limits_{x \to 0} \frac{f(x)}{x^2} = 5
\qquad
\Longrightarrow
\qquad
\frac{\lim \limits_{x \to 0} f(x)}{\lim \limits_{x \to 0} x \cdot \lim \limits_{x \to 0} x} = 5
\qquad
\text{ (Multiplying $\lim \limits_{x \to 0} x$ to both sides of the equation)}\\

\phantom{x} & \frac{\lim \limits_{x \to 0} f(x)}{\lim \limits_{x \to 0} x \cdot \cancel{\lim \limits_{x \to 0} x}}
\cdot
\cancel{\lim \limits_{x \to 0} x }
= 5 \cdot \lim \limits_{x \to 0} x\\

\phantom{x} & \lim \limits_{x \to 0} \frac{f(x)}{x} = 5 \cdot \lim \limits_{x \to 0} x\\
\phantom{x} & \lim \limits_{x \to 0} \frac{f(x)}{x} = 5 \cdot 0\\
\phantom{x} & \lim \limits_{x \to 0} \frac{f(x)}{x} = 0

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...