Monday, September 16, 2019

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 30

Determine the $\displaystyle \lim_{x \to 0} \frac{\cos mx - \cos nx}{x^2}$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

$\displaystyle \lim_{x \to 0} \frac{\cos mx - \cos nx}{x^2} = \frac{\cos m(0) - \cos n(0)}{0^2} = \frac{1-1}{0} = \frac{0}{0} \text{ Indeterminate}$

Thus by applying L'Hospital's Rule...

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \frac{\cos mx - \cos nx}{x^2} &= \lim_{x \to 0} \left[ \frac{(- \sin mx)(m) - (-\sin nx)(n)}{2x} \right]\\
\\
&= \lim_{x \to 0} \left[ \frac{n \sin(nx) - m \sin(mx)}{2x} \right]
\end{aligned}
\end{equation}
$


We will still get indeterminate form if we evaluate the limit, so we apply L'Hospital's Rule once more...


$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \left[ \frac{n \sin(nx) - m \sin(mx)}{2x} \right] &= \lim_{x \to 0} \left[ \frac{n \cos (nx)(n)-m\cos(mx)(m)}{2} \right]\\
\\
&= \lim_{x \to 0} \left[ \frac{n^2 \cos (nx) - m^2 - \cos (mx)}{2} \right]\\
\\
&= \frac{n^2 \cos(n(0)) -m^2 \cos(m(0))}{2}\\
\\
&= \frac{n^2(\cos 0 ) - m^2(\cos 0)}{2}\\
\\
&= \frac{n^2(1) - m^2(1)}{2}\\
\\
&= \frac{n^2-m^2}{2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...