Monday, September 16, 2019

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 30

Determine the limx0cosmxcosnxx2. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

limx0cosmxcosnxx2=cosm(0)cosn(0)02=110=00 Indeterminate

Thus by applying L'Hospital's Rule...

limx0cosmxcosnxx2=limx0[(sinmx)(m)(sinnx)(n)2x]=limx0[nsin(nx)msin(mx)2x]


We will still get indeterminate form if we evaluate the limit, so we apply L'Hospital's Rule once more...


limx0[nsin(nx)msin(mx)2x]=limx0[ncos(nx)(n)mcos(mx)(m)2]=limx0[n2cos(nx)m2cos(mx)2]=n2cos(n(0))m2cos(m(0))2=n2(cos0)m2(cos0)2=n2(1)m2(1)2=n2m22

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...