Thursday, September 19, 2019

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 56

Find the value of $x$ to make the statement $(\log x)^3 = 3 \log x$

$
\begin{equation}
\begin{aligned}
(\log x)^3 &= 3 \log x\\
\\
(\log x)(\log x)(\log x) &= 3 \log x && \text{Expand } (\log x)^3\\
\\
\frac{\left( \cancel{\log x} \right) (\log x) (\log x)}{\cancel{\log x}} &= \frac{3 \cancel{\log x}}{\cancel{\log x }} && \text{Divide by } \log x\\
\\
(\log x)(\log x) &= 3 && \text{Cancel out like terms}\\
\\
(\log x)^2 &= 3 && \text{Simplify}\\
\\
\log x &= \sqrt{3} && \text{Take the square root of each side}\\
\\
10^{\log x} &= 10^{\sqrt{3}} && \text{Raise 10 to each side}\\
\\
x &= 10^{\sqrt{3}}
\end{aligned}
\end{equation}
$

Then by checking,

$
\begin{equation}
\begin{aligned}
\left(\log 10^{\sqrt{3}}\right)^3 &= 3 \log 10^{\sqrt{3}}\\
\\
5.1962 &= 5.1962
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...