Friday, September 20, 2019

College Algebra, Exercise P, Exercise P.4, Section Exercise P.4, Problem 72

Simplify the expression $\displaystyle \left( \frac{xy^{-2}z^{-3}}{x^2y^3z^{-4}} \right)^{-3}$ and eliminate any negative exponents.

$
\begin{equation}
\begin{aligned}
\left( \frac{xy^{-2}z^{-3}}{x^2y^3z^{-4}} \right)^{-3} &= \left( \frac{x^2y^3 z^{-4}}{xy^{-2}z^{-3}} \right)^{3} && \text{Law: } \left( \frac{a}{b} \right)^{-n} = \left( \frac{b}{a} \right)^n\\
\\
&= \frac{(x^2)^3(y^3)^3(z^{-4})^3}{x^3(y^{-2})^3(z^{-3})^3} && \text{Law: } (ab)^n = a^nb^n\\
\\
&= \frac{x^6 y^9 z^{-12}}{x^3y^{-6}z^{-9}} && \text{Law: } \frac{a^m}{a^n} = a^{m-n}\\
\\
&= x^{6-3} y^{9-(-6)} z^{-12-(-9)} && \text{Simplify}\\
\\
&= x^3 y^{15} z^{-3} && \text{Definition of negative exponent } a^{-n} = \frac{1}{a^n}\\
\\
&= \frac{x^3y^{15}}{z^3}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...