Friday, September 27, 2019

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 74

Solve the equation $\sqrt{x} + a \sqrt[3]{x} + b \sqrt[6]{x} + ab = 0$. Suppose that $a$ and $b$ are positive real number.


$
\begin{equation}
\begin{aligned}

\sqrt{x} + a \sqrt[3]{x} + b \sqrt[6]{x} + ab =& 0
&& \text{Given}
\\
\\
(\sqrt{x} + a \sqrt[3]{x}) +(b \sqrt[6]{x} + ab) =& 0
&& \text{Group terms}
\\
\\
\sqrt[3]{x} (\sqrt[6]{x} + a) + b (\sqrt[6]{x} + a) =& 0
&& \text{Factor out } \sqrt[3]{x} \text{ and } b
\\
\\
(\sqrt[3]{x} + b)(\sqrt[6]{x} + a) =& 0
&& \text{Factor out } \sqrt[3]{x} + b
\\
\\
\sqrt[3]{x} + b =& 0 \text{ and } \sqrt[6]{x} + a = 0
&& \text{Zero Product Property}
\\\
\\
x =& (-b)^3 \text{ and } x = (-a)^6
&& \text{Solve for } x
\\
\\
x =& -b^3 \text{ and } x = a^6
&&


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...